Skip to main content

Looking at the forest from below: the role of seedling root traits in the adaptation to climate change of two Nothofagus species in Argentina

Abstract

Global climate change (CC) is an evolutionary challenge for natural tree populations. Scientific experts forecast an increase in temperature and a decrease in precipitation in the Argentine Patagonian Cordillera. Knowledge of the variation of adaptive traits at the seedling stage is crucial to prediction the adaptability of forest tree species. We aim to analyze genetic variation in root and shoot quantitative traits among and within natural populations of two key North Patagonian forest species, in order to evaluate their ability to deal with CC through adaptation. We established two common garden nursery trials: (1) 81 open pollinated families of Nothofagus obliqua from eight natural populations, and (2) 74 families of Nothofagus alpina from seven populations. At the end of the first growing season we measured shoot height, diameter, root length and root and stem dry biomass; we also estimated foliage biomass. In addition the root to stem ratio, specific root length and the root to shoot ratio were calculated. For both species intra-population variation was generally low, and average differentiation was moderate, with high levels of differentiation in some traits related to drought stress, indicating low adaptation capacity but also adaptation to current stressful conditions, which means it may be possible for some populations to survive CC without changing their genetic structures. Further studies are needed, including phenotypic plasticity assays, to complete the picture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mcdowell N, Vennetier M, Kitzberger T et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Aparicio AG, Zuki SM, Azpilicueta MM, Barbero FA, Pastorino MJ (2015) Genetic versus environmental contributions to variation in seedling resprouting in Nothofagus obliqua. Tree Genet Genomes 11:23

    Article  Google Scholar 

  • Azpilicueta MM, Marchelli P, Gallo LA (2009) The effects of quaternary glaciations in Patagonia as evidenced by chloroplast dna phylogeography of southern beech Nothofagus obliqua. Tree Genet Genomes 5:561–571

    Article  Google Scholar 

  • Azpilicueta MM, Varela S, Martínez A, Gallo LA (2010) Manual de viverización, cultivo y plantación de Roble Pellín en el norte de la región andino patagónica. Ediciones INTA. San Carlos de Bariloche, 67. https://inta.gob.ar/sites/default/files/script-tmp-inta_manualroble.pdf

  • Azpilicueta MM, Gallo LA, van Zonneveld M, Thomas E, Moreno C, Marchelli P (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manag 302:414–424

    Article  Google Scholar 

  • Azpilicueta MM, Pastorino MJ, Puntieri J, Barbero FA, Martinez-Meier A, Marchelli P, Gallo LA (2014) Robles in lagunas de Epulauquen, Argentina: previous and recent evidence of their distinctive character. Rev Chil Hist Nat 87:24

    Article  Google Scholar 

  • Baliuckas V, Pliura A (2003) Genetic variation and phenotypic plasticity of Quercus robur populations and open-pollinated families in Lithuania. Scand J For Res 18:305–319

    Article  Google Scholar 

  • Baliuckas V, Pliura A (2008) Phenogenetic variation pattern in adaptive traits of Betula pendula, Alnus glutinosa and Quercus robur in Lithuania. Biologija 54:60–65

    Article  Google Scholar 

  • Baliuckas V, Lagerström T, Eriksson G (2001) Within-population variation in juvenile growth rhythm and growth in Quercus robur L. and Fagus sylvatica L. For Genet 8:259–269

    Google Scholar 

  • Barbero FA (2014) Variación genética de poblaciones naturales Argentinas de Nothofagus obliqua (‘Roble Pellín’) en caracteres adaptativos tempranos relevantes para domesticación. Dissertation. Facultad de Agronomía—Universidad de Buenos Aires

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Benito-Garzón M, Fernández-Manjarrés JF (2015) Testing scenarios for assisted migration of forest trees in Europe. New For 46:979–994

    Article  Google Scholar 

  • Bianchi AR, Cravero CAC (2010) Atlas Climático Digital de la República Argentina-Instituto Nacional de Tecnología Agropecuaria. Ediciones INTA, Salta. URL: https://inta.gob.ar/documentos/atlas-climatico-digital-de-la-republica-argentina

  • Bran D, Pérez A, Ghermandi L, Barrios-Lamuniere SD (2001) Evaluación de poblaciones de Coihue (Nothofagus dombeyi) del Parque Nacional Nahuel Huapi, afectadas por la sequía 98/99, a escala de paisaje aspectos integradores, Cuadernillo No 4 13 (1:250.000). I Reunión Binacional de Ecología, pp 63. San Carlos de Bariloche

  • Centro Inv. Mar & Atm. (2015) Centro de Investigaciones del Mar y la Atmósfera. Cambio Climático en Argentina; Tendencias y Proyecciones. Secretaría de Ambiente y Desarrollo Sustentable de la Nación. pp. 5–22. http://3cn.cima.fcen.uba.ar/3cn_informe.php. Accessed 7 Sept 2017

  • Climent J, Alonso J, Gil L (2004) Arquitectura del sistema radical en dos procedencias de Pinus canariensis. IV Congreso Forestal Español, pp 5. http://secforestales.org/publicaciones/index.php/congresos_forestales/article/viewFile/16143/15986. Accessed 7 Sept 2017

  • Cregg BM (1994) Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiol 14:883–898

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introducción a la genética cuantitativa. Ed. ACRIBA, S.A. Zaragoza

  • Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294

    Article  Google Scholar 

  • Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43:711–738

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204

    PubMed  PubMed Central  CAS  Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2017) Package FactoMineR Multivariate exploratory data analysis and data mining. URL http://factominer.free.fr

  • IPCC (2014) Climate Change 2014: Synthesis report. In: Contribution of working groups I, II and III to the Fifth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri, LA Meyer (eds.)]. IPCC, Geneva

  • Ledo A, Paul KI, Burslem DFRP, Ewel JJ, Barton C, Battaglia M, Brooksbank K et al (2018) Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol 217:8–11

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Marchelli P, Gallo LA (1999) Annual and geographic variation in seed traits of Argentinean populations of southern beech Nothofagus nervosa (Phil.) Dim. et Mil. For Ecol Manag 121:239–250

    Article  Google Scholar 

  • Marchelli P, Gallo LA (2004) The combined role of glaciation and hybridization in shaping the distribution of genetic variation in a Patagonian southern beech. J Biogeogr 31:451–460

    Article  Google Scholar 

  • Marchelli P, Gallo LA (2006) Multiple ice-age refugia in a southern beech of South America as evidenced by chloroplast DNA markers. Conserv Genet 7:591–603

    Article  CAS  Google Scholar 

  • Marchelli P, Gallo LA, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers reveal a geographical divide across argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theor Appl Genet 97:642–646

    Article  CAS  Google Scholar 

  • Marchelli P, Thomas E, Azpilicueta MM, van Zonneveld M, Gallo L (2017) Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genet Genomes 13:119

    Article  Google Scholar 

  • Markesteijn L, Poorter L (2009) Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J Ecol 97:311–325

    Article  Google Scholar 

  • Matías L, González-Díaz P, Jump AS (2014) Larger investment in roots in southern range-edge populations of Scots pine is associated with increased growth and seedling resistance to extreme drought in response to simulated climate change. Environ Exp Bot 105:32–38

    Article  Google Scholar 

  • Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383

    Article  Google Scholar 

  • O’Neill GA, Adams WT, Aitken SN (2001) Quantitative genetics of spring and fall cold hardiness in seedlings from two Oregon populations of coastal Douglas-Fir. For Ecol Manag 149:305–318

    Article  Google Scholar 

  • Osier TL, Lindroth RL (2004) Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance. Oecologia 139:55–65

    Article  PubMed  Google Scholar 

  • Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495

    Article  Google Scholar 

  • Pastorino MJ, Marchelli P, Azpilicueta MM (2013) ¿Cómo ajustar la precisión en la estimación de parámetros de genética cuantitativa en estudios de genética ecológica? Ejemplos con especies nativas patagónicas. 4 Congreso Forestal Argentino y Latinoamericano. Iguazu, Misiones. https://doi.org/10.13140/rg.2.2.21237.06889

  • Paz H (2003) Root/shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats, and ecological groups. Biotropica 35:318–332

    Article  Google Scholar 

  • Reichenbacker RR, Schultz RC, Hartl AR (1996) Artificial defoliation effect on Pupulus growth, biomass production, and total nonstructural carbohydrate concentration. Entomol Am 25:632–642

    Google Scholar 

  • Sabatier Y, Azpilicueta MM, Marchelli P, González-Peñalba M, Lozano L, García L, Martinez A et al (2011) Distribución natural de Nothofagus alpina y Nothofagus obliqua (Nothofagaceae) en Argentina, dos especies de primera importancia forestal de los bosques templados norpatagónicos. Bol Soc Argic Bot 46:131–138

    Google Scholar 

  • Schmidt A, Poulain M, Klein D, Krause K, Peña-Rojas K, Schmidt H, Schulte A (2009) Allometric above-belowground biomass equations for Nothofagus pumilio (Poepp. & Endl.) natural regeneration in the Chilean Patagonia. Ann For Sci 66:513

    Article  Google Scholar 

  • Seiwa K, Kikuzawa K (1991) Phenology of tree seedlings in relation to seed size. Can J Bot Rev Can Bot 69:532–538

    Article  Google Scholar 

  • Sola G, Attis Beltrán H, Chauchard L, Gallo LA (2015) Effect of silvicultural management on the Nothofagus dombeyi, N. alpina and N. obliqua forest regeneration within the Lanín Natural Reserve (Argentina). Bosque 36:111–118

    Article  Google Scholar 

  • Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tortorelli L (1956) Maderas y bosques, argentinos edn. ACME, Buenos Aires

    Google Scholar 

  • Varela SA, Gyenge JE, Fernández ME, Schlichter T (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees 24:443–453

    Article  Google Scholar 

  • Visscher PM (1998) On the sampling variance of intraclass correlations and genetic correlations. Genetics 149:1605–1614

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wiley E, Casper BB, Helliker BR (2017) Recovery following defoliation involves shifts in allocation that favour storage and reproduction over radial growth in black oak. J Ecol 105:412–424

    Article  CAS  Google Scholar 

  • Yang F, Wang Y, Miao LF (2010) Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes. Physiol Plant 139:388–400

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Priscila M. Willems and Alejandro Aparicio for their help with the statistical analyses and R graphics. Thanks also go to Sebastián Zuki for his help in the installation and handling of the trials, Fernando Barbero for his collaboration in seed collection, and two anonymous reviewers for their helpful comments. This research was supported by the projects “PROMEF—Subprograma Nothofagus—BIRF 7520 AR”, “Domesticación de especies forestales nativas patagónicas—INTA PNFOR-44321″ and “Variación genética de poblaciones naturales argentinas de Raulí y Roble Pellín en caracteres adaptativos tempranos relevantes para domesticación”. CONICET PIP 2008 No 112-200801-02867”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia G. Duboscq-Carra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duboscq-Carra, V.G., Letourneau, F.J. & Pastorino, M.J. Looking at the forest from below: the role of seedling root traits in the adaptation to climate change of two Nothofagus species in Argentina. New Forests 49, 613–635 (2018). https://doi.org/10.1007/s11056-018-9647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-018-9647-3

Keywords

  • Allometry
  • Drought resistance
  • Population genetics