New Forests

, Volume 48, Issue 6, pp 785–799 | Cite as

Variation in seed production of Jatropha curcas L. accessions under tropical dry forest conditions in Ecuador

  • Álvaro Cañadas-López
  • Diana Rade-Loor
  • Juan Manuel Domínguez-Andrade
  • J. Jesús Vargas-Hernández
  • Carlos Molina-Hidrovo
  • Carlos Macías-Loor
  • Christian WehenkelEmail author


The Ecuadorian Government has, since the end of 2011, promoted an initiative for using pure jatropha oil, derived from the seeds of Jatropha curcas L., to generate electricity to supply Floreana Island (one of the Galapagos Islands). In the present study, nine elite accessions of J. curcas from tropical dry forests in Ecuador were cultivated for the purpose of evaluating seed production in relation to the propagation method used (seed, cutting). A split-plot design with three replicates was applied. Seed production, measured over a period of 7 years (2009–2015) showed a large year-to-year variation. However, seed production varied significantly among accessions and depended on the propagation method (seeds or cuttings). Propagation by stem cuttings stabilized the variability in the vegetative and seed production components measured, increasing the strength of their relationships with seed yield. The three highest yielding accessions produced 0.28–0.30 kg of seeds tree−1 year−1. As seed yield was not correlated with annual precipitation, the year-to-year variation in production of accessions indicates the effect of other factors not considered here, such as agronomic practices. The study findings suggest that agroforestry practices could be developed that would enable J. curcas to play a predominant role in a strategy for tropical dry forests aimed at reducing poverty (also known as pro-poor growth strategy).


Germplasm bank Phenotype Jatropha productivity Biodiesel Seed yield 



We are very grateful to the National Research Institute for Agricultural and Cattle (INIAP), in the name of the Director of the Portoviejo Research Station (May 2015–2016), for financial and logistical support.


  1. Achten WM, Mathijs E, Verchot L, Singh VP, Aerts R, Muys B (2007) Jatropha biodiesel fuelling sustainability? Biofuels Bioprod Biorefining 1(4):283–291CrossRefGoogle Scholar
  2. Achten WM, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R et al (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32(12):1063–1084CrossRefGoogle Scholar
  3. Afiff SA (2014) Engineering the jatropha hype in Indonesia. Sustainability 6(4):1686–1704CrossRefGoogle Scholar
  4. Behera SK, Srivastava P, Tripathi R, Singh JP, Singh N (2010) Evaluation of plant performance of Jatropha curcas L. under different agro-practices for optimizing biomass—a case study. Biomass Bioenergy 34(1):30–41CrossRefGoogle Scholar
  5. Cañadas L (1983) Mapa bio climático y ecológico del Ecuador. Editores Asociados Cia. Ltd., QuitoGoogle Scholar
  6. Dhillon RS, Hooda MS, Handa AK, Ahlawat KS, Kumar Y, Subha S et al (2006) Clonal propagation and reproductive biology in Jatropha curcas L. Indian J Agrofor 8(2):18–27Google Scholar
  7. Edrisi SA, Dubey RK, Tripathi V, Bakshi M, Srivastava P, Jamil S et al (2015) Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sustain Energy Rev 41:855–862CrossRefGoogle Scholar
  8. Everson CS, Mengistu MG, Gush MB (2013) A field assessment of the agronomic performance and water use of Jatropha curcas in South Africa. Biomass Bioenergy 59:59–69CrossRefGoogle Scholar
  9. Fairless D (2007) Biofuel: the little shrub that could-maybe. Nature 449(7163):652–655CrossRefPubMedGoogle Scholar
  10. Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and social-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29(1):12–24CrossRefGoogle Scholar
  11. Ginwal HS, Rawat PS, Srivastava RL (2004) Seed source variation in growth performance and oil yield of Jatropha curcas Linn. in central India. Silvae Genet 53(4):186–191Google Scholar
  12. Hunsberger C (2013) Jatropha as a biofuel crop and the economy of appearances: experiences from Kenya. Rev Afr Polit Econ 41(140):216–231CrossRefGoogle Scholar
  13. INAMHI (2016) Anuario meteorológico. Quito, Ecuador. Accessed 1 Sept 2016
  14. INER (2016) Estudio del Alternativas para el Aprovechamiento Energético de Biomasa Residual del Proyecto “JCL Galápagos”. Accessed 1 Sept 2016
  15. Jongschaap REE, Corré WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L.: global Jatropha curcas evaluation, breeding and propagation programme. Wageningen: Plant Research International BV, report 158Google Scholar
  16. Kalam MA, Ahamed JU, Masjuki HH (2012) Land availability of Jatropha production in Malaysia. Renew Sustain Energy Rev 16(6):3999–4007CrossRefGoogle Scholar
  17. Kheira AAA, Atta NM (2009) Response of Jatropha curcas L. to water deficits: yield, water use efficiency and oilseed characteristics. Biomass Bioenergy 33(10):1343–1350CrossRefGoogle Scholar
  18. Kochhar S, Singh SP, Kochhar VK (2008) Effect of auxins and associated biochemical changes during clonal propagation of the biofuel plant-Jatropha curcas. Biomass Bioenergy 32(12):1136–1143CrossRefGoogle Scholar
  19. Koh LP, Miettinen J, Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci 108(12):5127–5132CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops Prod 28(1):1–10CrossRefGoogle Scholar
  21. Laviola BG, Dias LDS (2008) Teor e acúmulo de nutrientes em folhas e frutos de pinhão-manso. Rev Bras Ciênc Solo 32(5):1969–1975CrossRefGoogle Scholar
  22. Laviola BG, Rosado TB, Bhering LL, Kobayashi AK, Resende MDVD (2010) Genetic parameters and variability of physic nut accessions during early developmental stages. Pesq Agropec Bras 45(10):1117–1123CrossRefGoogle Scholar
  23. Laviola BG, Alves AA, Gurgel FDL, Rosado TB, Rocha RB, Albrecht JC (2012) Estimates of genetic parameters for physic nut traits based in the germplasm two years evaluation. Ciênc Rural 42(3):429–435CrossRefGoogle Scholar
  24. Maes WHA, Trabucco A, Achten WM, Muys B (2009) Climatic growing conditions of Jatropha curcas L. Biomass Bioenergy 33(10):1481–1485CrossRefGoogle Scholar
  25. Mendoza J, Rodríguez M, López J, Mejía N, Zambrano F (2009) Tecnologías para aprovechamiento del JCL (Jatropha curcas L.) como fuente de biocombustible en tierras marginales secas del litoral ecuatoriano. Portoviejo: INIAP-EPN-IICA. Boletín Técnico No 136Google Scholar
  26. Ndong R, Montrejaud-Vignoles M, Girons OS, Gabrielle B, Pirot R, Domergue M et al (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenergy 1(3):197–210CrossRefGoogle Scholar
  27. Nepstad D, Soares-Filho BS, Merry F, Lima A, Moutinho P, Carter J et al (2009) The end of deforestation in the Brazilian Amazon. Science 326(5958):1350–1351CrossRefPubMedGoogle Scholar
  28. Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19(1):1–15CrossRefGoogle Scholar
  29. Ovando-Medina I, Espinosa-García FJ, Núñez-Farfán JS, Salvador-Figueroa M (2011) State of the art of genetic diversity research in Jatropha curcas. Sci Res Essay 6(8):1709–1719Google Scholar
  30. Pandey VC, Singh K, Singh JS, Kumar A, Singh B, Singh RP (2012) Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renew Sustain Energy Rev 16(5):2870–2883CrossRefGoogle Scholar
  31. Rao GR, Korwar GR, Shanker AK, Ramakrishna YS (2008) Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions. Trees 22(5):697–709CrossRefGoogle Scholar
  32. Rocha RB, Ramalho AR, Teixeira AL, Laviola BG, da Silva FCG, Militão JSLT (2012) Eficiência da seleção para incremento do teor de óleo do pinhão-manso. Pesq Agropec Bras 47(1):44–50CrossRefGoogle Scholar
  33. Rosado TB, Laviola BG, Faria DA, Pappas MR, Bhering LL, Quirino B et al (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50(6):2372–2382CrossRefGoogle Scholar
  34. Santana UA, Carvalho Filho JLSD, Blank AF, Silva-Mann R (2013) Capacidade combanatória e parâmetros genéticos de genótipos de pinhão-manso quanto a caracteres morfoagrômicos. Pesq Agropec Bras 48(11):1449–1456CrossRefGoogle Scholar
  35. Srivastava P, Behera SK, Gupta J, Jamil S, Singh N, Sharma YK (2011) Growth performance, variability in yield traits and oil content of selected accessions of Jatropha curcas L. growing in a large scale plantation site. Biomass Bioenergy 35(9):3936–3942CrossRefGoogle Scholar
  36. Sunil N, Varaprasad KS, Sivaraj N, Kumar TS, Abraham B, Prasad RBN (2008) Assessing Jatropha curcas L. germplasm in situ—a case study. Biomass Bioenergy 32(3):198–202CrossRefGoogle Scholar
  37. Timilsina GR (2013) Biofuels in the long-run global energy supply mix for transportation. Philos Trans R Soc London A Math Phys Eng Sci 372(2006):20120323CrossRefGoogle Scholar
  38. Tjeuw J, Slingerland M, Giller K (2015) Relationships among Jatropha curcas seed yield and vegetative plant components under different management and cropping systems in Indonesia. Biomass Bioenergy 80:128–139CrossRefGoogle Scholar
  39. Trabucco A, Achten WM, Bowe C, Aerts RAF, Orshoven JV, Norgrove L et al (2010) Global mapping of Jatropha curcas yield based on response of fitness to present and future climate. GCB Bioenergy 2(3):139–151Google Scholar
  40. van Dam J, Junginger M, Faaij AP (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew Sustain Energy Rev 14(9):2445–2472CrossRefGoogle Scholar
  41. van Eijck J, Romijn H, Balkema A, Faaij AP (2014) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspect. Renew Sustain Energy Rev 32:869–889CrossRefGoogle Scholar
  42. Viera M, Schumacher MV, Bonacina DM, de Oliveira Ramos LO, Rodríguez-Soalleiro R (2017) Biomass and nutrient allocation to aboveground components in fertilized Eucalyptus saligna and E. urograndis plantations. New Forest 48(3):445–462CrossRefGoogle Scholar
  43. Wahl N, Jamnadass R, Baur H, Munster C, Iiyama M (2009) Economic viability of Jatropha curcas L. plantation in Northern Tanzania-assessing farmers’ prospects via costbenefit analysis. Nairobi: World Agroforestry Centre, ICRAF, Working Paper No 97Google Scholar
  44. Walmsley D, Bailis R, Klein AM (2016) A global synthesis of Jatropha cultivation: insights into land use change and management practices. Environ Sci Technol 50(17):8993–9002CrossRefPubMedGoogle Scholar
  45. Zhang FL, Niu B, Wang YC, Chen F, Wang SH, Xu Y et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci 174(5):510–518CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Álvaro Cañadas-López
    • 1
    • 5
  • Diana Rade-Loor
    • 2
  • Juan Manuel Domínguez-Andrade
    • 3
  • J. Jesús Vargas-Hernández
    • 4
  • Carlos Molina-Hidrovo
    • 5
  • Carlos Macías-Loor
    • 5
  • Christian Wehenkel
    • 6
    Email author
  1. 1.ULEAM-Extensión Chone, Docente Investigador, Carrera Ingeniería AgropecuariaUniversidad Laica Eloy AlfaroChoneEcuador
  2. 2.Carrera de Administración PúblicaEscuela Superior Politécnica Agropecuaria de Manabí (ESPAM)CalcetaEcuador
  3. 3.ESPAE Graduate School of ManagementEscuela Superior Politécnica del LitoralGuayaquilEcuador
  4. 4.Colegio de PostgraduadosPosgrado en Ciencias ForestalesTexcocoMexico
  5. 5.Instituto Nacional de Investigaciones Agropecuarias (INIAP)PortoviejoEcuador
  6. 6.Instituto de Silvicultura e Industria de la MaderaUniversidad Juárez del Estado de DurangoDurangoMexico

Personalised recommendations