Skip to main content

Vochysia guatemalensis Donn. Smith, an alternative species for reforestation on acid tropical soils

Abstract

Vochysia guatemalensis Donn. Smith is a native species commonly used in small-scale reforestation programs in Costa Rica recognized for its fast growth under acidic and unfertile soil conditions. This study aimed to evaluate the nutrient concentration dynamics on individual trees of V. guatemalensis of increasing ages, in order to improve the understanding some aspects of its ecology as well as management of this tree species. Nutrient (N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, and B) and Al concentration in stems, branches and foliage were measured using false time series (also known as chronosequences) in 13 different tree stands (2–21 years) found in the Caribbean lowlands of Costa Rica. N, K and S concentrations in the stems showed a significant inverse relationship with DBH; while P, S, and Cu foliar contents increased with DBH. Average foliar concentrations of N, Ca, K, Mg, Fe, Zn, Mn, B, and Al showed little or no variation with tree growth. Foliar Al concentration (21, 297–28, 826 mg kg−1) was higher than previously reported as toxic for non-Al accumulating species (<1000 mg kg−1), confirming V. guatemalensis as an Al hyper accumulator. Our results reinforce the possibility of using V. guatemalensis for timber production, especially to improve the income of small farmers farming on very acidic soils. The nutrient concentrations that were obtained for different tree components provide baseline information for further studies where the objective is to evaluate the nutritional status of a site.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alice F, Montagnini F, Montero M (2004) Productividad en plantaciones puras y mixtas de especies forestales nativas en la Estación Biológica La Selva, Sarapiquí, Costa Rica. Agronomía Costarricense 28(2):61–71

    Google Scholar 

  2. Alvarado A (2012) Diagnóstico de la nutrición en plantaciones forestales. In: Alvarado A, Raigosa J (eds) Nutrición y fertilización forestal en regiones tropicales. Asociación Costarricense de las Ciencias del Suelo, San José, pp 25–51

    Google Scholar 

  3. Arias WA (1994) Efecto de cinco sustratos en el crecimiento de Vochysia guatemalensis y censo de la reforestación en la Zona Sur de Costa Rica. Informe de Práctica de Especialidad. Instituto Tecnológico de Costa Rica, Cartago

    Google Scholar 

  4. Arias D, Calvo-Alvarado J, Richter DDB, Dohrenbusch A (2011) Productivity, aboveground biomass, nutrient uptake and carbon in fast-growing tree plantations of native and introduced species in the southern region of Costa Rica. Biomass Energy 35:1779–1788

    CAS  Article  Google Scholar 

  5. Badilla Y (2012) Concentración y absorción de elementos en plantaciones de Vochysia guatemalensis de las zonas Caribe y Norte de Costa Rica. Tesis de Licenciatura. Escuela de Ingeniería Forestal. Instituto Tecnológico de Costa Rica, Cartago

    Google Scholar 

  6. Barker AV, Pilbeam DJ (2006) Handbook of plant nutrition. CRC Press, USA

    Book  Google Scholar 

  7. Barraza D, Días J (1999) Clasificación preliminar de sitios para plantaciones con Hyeronima alchorneoides, Vochysia guatemalensis, Vochysia ferruginea, Virola koschnyi y Terminalia amazonia en la zona Nor.-Atlántica de Costa Rica. Práctica de especialidad. UNA: Escuela de Ciencias Ambientales, Heredia

    Google Scholar 

  8. Basuki TM, Van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag 257(8):1684–1694

    Article  Google Scholar 

  9. Bertsch F (1998) La fertilidad de los suelos y su manejo. San José, Costa Rica. Asociación Costarricense de la Ciencia del Suelo, pp 83–110

  10. Butterfield RP, Espinoza M (1995) Screening trial of 14 tropical hardwoods with an emphasis on species native to Costa Rica: fourth year’s results. New For 9(2):135–145

    Article  Google Scholar 

  11. Butterfield RP, Fisher RF (1994) Untapped potential: native species for reforestation. J For 92(6):37–40

    Google Scholar 

  12. Camacho M (2014) Modelo de absorción de nutrimentos como herramienta para hacer recomendaciones de manejo en plantaciones de Vochysia guatemalensis Donn. Smith en el Trópico Muy Húmedo de Costa Rica. Tesis de grado. Escuela de Agronomía. Universidad de Costa Rica, Costa Rica

    Google Scholar 

  13. Carpenter LN, Nichols D, Sandi E (2004) Early growth of native and exotic trees planted on degraded tropical pasture. For Ecol Manag 196:367–378

    Article  Google Scholar 

  14. Chave J, Riéra B, Dubois MA (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17(1):79–96

    Article  Google Scholar 

  15. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):87–99

    CAS  Article  PubMed  Google Scholar 

  16. Chenery E, Sporne K (1976) A note on the evolutionary status of aluminium-accumulators among dicotyledons. New Phytol 76:551–554

    CAS  Article  Google Scholar 

  17. Cornelius JP, Mesén JF (1997) Provenance and family variation in growth rate stem straightness, and foliar mineral concentration in Vochysia guatemalensis. Can J For Res 27(7):1103–1109

    Article  Google Scholar 

  18. Cronan CS, Grigal DF (1995) Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24(2):209–226

    CAS  Article  Google Scholar 

  19. Cuenca G, Herrera R, Medina E (1990) Aluminium tolerance in trees of a tropical cloud forest. Plant Soil 125(2):169–175

    CAS  Article  Google Scholar 

  20. Drechsel P, Zech W (1991) Foliar nutrient levels of broad-leaved tropical trees: a tabular review. Plant Soil 131(1):29–46

    CAS  Google Scholar 

  21. Ericsson T, Göransson A, Van Oene H, Gobran G (1995) Interactions between Aluminium, Calcium and Magnesium: impacts on nutrition and growth of forest trees. Ecol Bull 44:191–196

    CAS  Google Scholar 

  22. Fernández-Moya J, Murillo R, Portuguez E, Fallas JL, Rios V, Kottman F, Verjans JM, Mata R, Alvarado A (2013) Nutrient concentration age dynamics of teak (Tectona grandis L.f.) plantations in Central America. For Syst 22(1):123–133

    Google Scholar 

  23. Fisher RF (1995) Ameliorization of degraded rain forest soils by plantations of native trees. Soil Sci Soc Am J 59(2):544–549

    CAS  Article  Google Scholar 

  24. Fonseca W, Alice F, Rey-Benayas JR (2009) Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque 30(1):36–47

    Article  Google Scholar 

  25. Fournier LA (2002) Vochysia guatemalensis Donn. Sm. In: Vozzo JA (ed) Tropical tree seed manual. Washington USDA/Forest Service US, pp 778–780

  26. Fox TR, Miller BW, Rubilar R, Stape JL, Albaugh TJ (2011) Phosphorus nutrition of forest plantations: the role of inorganic and organic phosphorus. Soil Biol 100:317–338

    Article  Google Scholar 

  27. Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19(7–12):959–987

    CAS  Article  Google Scholar 

  28. Foy CD, Chaney RT, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29(1):511–566

    CAS  Article  Google Scholar 

  29. Geoghegan LE, Sprent JL (1996) Aluminum and nutrient concentrations in species native to central Cerrado. Commun Soil Sci Plant Anal 27(18–20):2925–2934

    CAS  Article  Google Scholar 

  30. González E (1996) Tropical tree species for reforestation: studies on seed storage, foliar nutrient content and wood variation. Ph.D. dissertation. Texas A&M University (USA), 124p

  31. González E, Fisher RF (1997) Variation in foliar elemental composition in mature wild trees and among families and provenances of Vochysia guatemalensis in Costa Rica. Silvae Genetica 46(1):45–50

    Google Scholar 

  32. Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Tree 11(9):378–382

    CAS  PubMed  Google Scholar 

  33. Haggar J, Wightman K, Fisher R (1997) The potential of plantations to foster woody regeneration within a deforested landscape in lowland Costa Rica. For Ecol Manag 99(1–2):55–64

    Article  Google Scholar 

  34. Haridasan M (1982) Aluminium accumulation by some cerrado native species of central Brasil. Plan Soil 65(2):165–273

    Google Scholar 

  35. Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource use efficiencies in N-and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4(7):646–657

    CAS  Article  Google Scholar 

  36. Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Ann Rev Ecol Evol Syst 40:613–635

    Article  Google Scholar 

  37. Herbert DA, Fownes JH (1995) Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29(3):223–235

    CAS  Article  Google Scholar 

  38. Herrera B, Campos JJ, Finegan B, Alvarado A (1999) Factors affecting site productivity of a Costa Rican secondary rain forest in relation to Vochysia ferruginea, a commercially valuable canopy tree species. For Ecol Manag 118:73–81

    Article  Google Scholar 

  39. Holdreige LR (1967) Life zones ecology. Tropical Science Center, San José

    Google Scholar 

  40. Jansen S, Broadley M, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  41. Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11(5):419–431

    Article  PubMed  Google Scholar 

  42. Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Wiley, Inglaterra

    Google Scholar 

  43. Kalra Y (1998) Handbook of reference methods for plant analysis. Soil and Plant Analysis Council, Inc., Boca Raton

    Google Scholar 

  44. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    CAS  Article  PubMed  Google Scholar 

  45. Lathwell DJ, Grove TL (1986) Soil-plant relationships in the tropics. Annu Rev Ecol Evol Syst 17:1–16

    Article  Google Scholar 

  46. Lehto T, Räisänen M, Lavola A, Julkunen-Tiitto R, Aphalo PJ (2004) Boron mobility in deciduous forest trees in relation to their polyols. New Phytol 163(2):333–339

    CAS  Article  Google Scholar 

  47. Lehto T, Ruuhola T, Dell B (2010) Boron in forest trees and forest ecosystems. For Ecol Manag 260(12):2053–2069

    Article  Google Scholar 

  48. Lenoble ME, Blevins DG, Miles RJ (1996a) Prevention of aluminium toxicity with supplemental boron. I. Maintenance of root elongation and cellular structure. Plant, Cell Environ 19:1132–1142

    CAS  Article  Google Scholar 

  49. Lenoble ME, Blevins DG, Miles RJ (1996b) Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, high- aluminum subsoil. Plant, Cell Environ 19:1143–1148

    CAS  Article  Google Scholar 

  50. Masunaga T, Kubota D, Hotta M, Wakatsuki T (1998) Mineral composition of leaves and bark in aluminum accumulators in a tropical rain forest in Indonesia. Soil Sci Plant Nutr 44(3):347–358

    CAS  Article  Google Scholar 

  51. Montagnini F (2000) Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. For Ecol Manag 134:257–270

    Article  Google Scholar 

  52. Montagnini F (2007) Soil sustainability in agroforestry systems: experiences on impacts of trees on soil fertility from a humid tropical site. In: Batish, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, pp 239–251

    Chapter  Google Scholar 

  53. Montagnini F, Sancho F, Ramstad K, Stijfhoorn E (1991) Multipurpose trees for soil restoration in the humid lowlands of Costa Rica. In: Taylor DA, Mc Dicken KG (eds) Research on multipurpose trees in Asia. Winrock International Institute for Agricultural Development, Bangkok, pp 41–58

    Google Scholar 

  54. Montagnini F, Ugalde L, Navarro C (2003) Growth characteristics of some native tree species used in silvopastoril systems in the humid lowlands of Costa Rica. Agrofor Syst 59:163–170

    Article  Google Scholar 

  55. Montero M (1999) Factores de sitio que influyen en el crecimiento de Tectona grandis L.f. y Bombacopsis quinata (Jacq.) Dugand, en Costa Rica. MSc thesis. Universidad Austral de Chile/CATIE

  56. Montero M, Montagnini F (2006) Modelos alométricos para la estimación de biomasa de diez especies nativas en plantaciones en la región Atlántica de Costa Rica. Recursos Naturales y Ambiente 45:118–125

    Google Scholar 

  57. Pérez J, Bornemisza E, Sollins P (1993) Identificación de especies forestales acumuladoras de aluminio en una plantación experimental ubicada en Sarapiquí, Costa Rica. Agronomía Costarricense 17(2):99–104

    Google Scholar 

  58. Petit B, Montagnini F (2004) Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. For Ecol Manag 199:243–257

    Article  Google Scholar 

  59. Piotto D, Craven D, Montagnini F, Alice F (2010) Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New For 39:369–385

    Article  Google Scholar 

  60. Rao IM, Friesen DK, Osaki M (1999) Plant adaptation to phosphorus-limited tropical soils. Chapter 4. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Deker, Inc, New York, pp 61–95

    Google Scholar 

  61. Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  62. Sánchez PA (1985) Suelos del trópico: características y manejo (no. 48). IICA Biblioteca Venezuela, 634p

  63. Sánchez PA, Logan TJ (1992) Myths and Science about the chemistry and fertility of soils in the tropics. In: Myths and science of soils in the tropics (ed) SSSA special publication no. 29. Soil Science Society of America and American Society of Agronomy, Madison, pp 35–46

    Google Scholar 

  64. Sancho F, Mata R, Molina E, Salas R (1989) Estudio de suelos finca de la Escuela de Agricultura de la Región Tropical Húmeda Guácimo, provincia de Limón. Universidad EARTH, San José

    Google Scholar 

  65. Shen R, Ma J, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al accumulator, Fagopyrum esculentum Moench. Planta 215(3):394–398

    CAS  Article  PubMed  Google Scholar 

  66. Solís M, Moya R (2006) Vochysia guatemalensis en Costa Rica (en línea). San José, Costa Rica, FONAFIFO. 100 p. Consultado el 3 de agosto del 2007 Disponible en ManualVochysia.pdf

  67. Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64(1):209–210

    Article  Google Scholar 

  68. Stuhrmann M, Bergmann C, Zech W (1994) Mineral nutrition, soil factors and growth rates of Gmelina arborea plantations in the humid lowlands of northern Costa Rica. For Ecol Manag 70(1):135–145

    Article  Google Scholar 

  69. Van Praag HJ, Weissen F (1985) Aluminium effects on spruce and beech seedlings. Plant Soil 83:331–356

    Article  Google Scholar 

  70. Van Praag HJ, Weissen F (1986) Foliar mineral composition, fertilization and dieback of Norway spruce in the Belgian Ardennes. Tree Physiol 1(2):169–176

    Article  PubMed  Google Scholar 

  71. Vitousek PM (1984) Litterfall nutrient cycling and nutrient limitation in tropical forest. Ecology 65:285–298

    CAS  Article  Google Scholar 

  72. Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37(1):63–75

    CAS  Article  Google Scholar 

  73. Watanabe T, Osaki M (2002) Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: a review. Commun Soil Sci Plant Anal 33(7–8):1247–1260

    CAS  Article  Google Scholar 

  74. Yang ZB, Rao IM, Horst WJ (2013) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372(1–2):3–25

    CAS  Article  Google Scholar 

  75. Young KC (2009) Testing the effects of aluminum-hyperaccumulating trees and nitrogen-fixing trees on successional processes in Costa Rica. Ph.D. dissertation. University of California at Irvine (USA), 121p

  76. Yuan Z, Liu W, Niu S, Wan S (2007) Plant nitrogen dynamics and nitrogen-use strategies under altered nitrogen seasonality and competition. Ann Bot 100(4):821–830

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Zech W, Drechsel P (1991) Relationships between growth, mineral nutrition and site factors of teak (Tectona grandis) plantations in the rainforest zone of Liberia. For Ecol Manag 41(3):221–235

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel E. Camacho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camacho, M.E., Alvarado, A. & Fernández-Moya, J. Vochysia guatemalensis Donn. Smith, an alternative species for reforestation on acid tropical soils. New Forests 47, 497–512 (2016). https://doi.org/10.1007/s11056-016-9527-7

Download citation

Keywords

  • White Yemeri
  • Forest nutrition
  • Foliar nutrient concentration
  • Small-scale planted forests
  • Al tolerance, tropical lowland forest