Ecological niche modelling of three Mediterranean pine species in the south of Spain: a tool for afforestation/reforestation programs in the twenty-first century

Abstract

Climate change models predict an increase in aridity in many parts of the world for the twenty-first century, which is likely to be more intense in the Mediterranean basin than in other regions. This study addresses the potential distribution of three Mediterranean pine species (Pinus pinea L., P. halepensis Mill. and P. pinaster Aiton) in southern Spain in response to the forecast increased aridity. Pines constitute a useful source of various types of raw materials, which has led to their increasing introduction around the world. The study was based on ecological niche modelling using multinomial logistic regression, over an area spanning about 8.7 million ha in the south of Spain. In total, 11 explanatory variables were included, drawing on measurements made at high resolution (200 m). Four different periods were studied: the reference period (1961–2000), early twenty-first century (2011–2040), middle twenty-first century (2041–2070) and late twenty-first century (2071–2100). Future time slices were analysed in three different scenarios: B1, A1b and A2 in the CNCM3 general circulation model. The results predict a wider distribution for stone pine, which could expand its potential area in southern Spain. In contrast, Aleppo pine, and especially cluster pine, would reduce their present distribution, with cluster pine occupying higher altitude sites while low altitude populations diminished. The validation model enables accurate maps to be produced, representing powerful tools for afforestation/reforestation programs in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Acker SA, Halpern CB, Harmon ME, Dyrness CT (2002) Trends in bole biomass accumulation, net primary production and tree mortality in Pseudotsuga menziesii forests of contrasting age. Tree Physiol 22:213–217

    CAS  Article  PubMed  Google Scholar 

  2. Ahrens CD (2006) Meteorology today, 8th edn. Brooks/Cole Publishing, California

    Google Scholar 

  3. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  4. Alba-Sánchez F, López-Sáez JA, Benito-de Pando B, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16:214–228

    Article  Google Scholar 

  5. Araùjo MB, Guisan A (2006) Five (or so) challenges for species distribution modeling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  6. Augustin NH, Cummins RP, French DD (2001) Exploring spatial vegetation dynamics using logistic regression and a multinomial logit model. J Appl Ecol 38(5):991–1006

    Article  Google Scholar 

  7. Baishya R, Barik SK (2011) Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Ann For Sci 68:727–736. doi:10.1007/s13595-011-0089-8

    Article  Google Scholar 

  8. Barbéro M, Loisel R, Quézel P, Richardson MD, Romane F (1998) Pines of the Mediterranean basin. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 153–170

    Google Scholar 

  9. Bässler C, Müller J, Hothorn T, Kneib T, Badeck F, Dziock F (2010) Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol Indic 10:341–352. doi:10.1016/j.ecolind.2009.06.014

    Article  Google Scholar 

  10. Bede-Fazekas A, Horvath L, Kocsis M (2014) Impact of climate change on the potential distribution of Mediterranean pines. Idojaras 118:41–52

    Google Scholar 

  11. Bertrand R, Perez V, Gegout JC (2012) Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Glob Change Biol 18:2648–2660

    Article  Google Scholar 

  12. Burnham KP, Anderson DR (2004) Multimodel inference—understanding AIC and BIC in model selection. Sociol Meth Res 33:261–304. doi:10.1177/0049124104268644

    Article  Google Scholar 

  13. Cabezudo Artero B, Pérez Latorre AV (2004) Las comunidades vegetales. In: Herrera CM (ed) El monte mediterráneo en Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, pp 29–45

  14. Campoe OC, Stape JL, Albaugh TJ, Allen HL, Fox TR, Rubilar R, Binkley D (2013) Fertilization and irrigation effects on tree level aboveground net primary production, light interception and light use efficiency in a loblolly pine plantation. For Ecol Manage 288:43–48. doi:10.1016/j.foreco.2012.05.026

    Article  Google Scholar 

  15. Carrión JS, Díez MJ (2004) Origen y evolución de la vegetación mediterránea en Andalucía a través del registro fósil. In: Herrera CM (ed) El monte mediterráneo en Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, pp 21–27

  16. Carrion JS, Navarro C, Navarro J, Munuera M (2000) The distribution of cluster pine (Pinus pinaster) in Spain as derived from palaeoecological data: relationships with phytosociological classification. Holocene 10:243–252. doi:10.1191/095968300676937462

    Article  Google Scholar 

  17. Ceballos L, Ruiz de la Torre J (1979) Árboles y arbustos, 1st edn. Escuela Técnica Superior de Ingenieros de Montes, Madrid

    Google Scholar 

  18. Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (eds) (2005) Los bosques ibéricos. Una interpretación geobotánica, Editorial Planeta, Barcelona

  19. Coudun C, Gégout JC, Piedallu C, Rameau JC (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J Biogeogr 33:1750–1763

    Article  Google Scholar 

  20. De Castro M, Martín-Vide J, Alonso S (2005) El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In: Moreno Rodríguez JM (ed) Evaluación preliminar de los impactos en España por efecto del cambio climático, Ministerio de Medio Ambiente y Universidad de Castilla–La Mancha, pp 1–64

  21. Del Campo AD, Fernandes TJG, Molina AJ (2014) Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? Eur J For Res 133:879–894. doi:10.1007/s10342-014-0805-7

    Article  Google Scholar 

  22. Derak M, Cortina J (2014) Multi-criteria participative evaluation of Pinus halepensis plantations in a semiarid area of southeast Spain. Ecol Indic 43:56–68. doi:10.1016/j.ecolind.2014.02.017

    Article  Google Scholar 

  23. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  24. Felicísimo AM, Muñoz J, Mateo RG, Villalba CJ (2012) Vulnerabilidad de la flora y vegetación españolas ante el cambio climático. Ecosistemas 21(3):1–6

    Google Scholar 

  25. Finley AO, Banerjee S, McRoberts RE (2009) Hierarchical spatial models for predicting tree species assemblages across large domains. Ann Appl Stat 3:1052–1079. doi:10.1214/09-aoas250

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fons-Esteve J, Páramo F (2003) Mapping sensitivity to desertification (DISMED). European Environmental Agency, European Topic Center, Terrestrial Environment, Internal Report

  27. García del Barrio JM, Aunon F, Sanchez de Ron D, Alia R (2013) Assessing regional species pools for restoration programs in Spain. New For 44:559–576. doi:10.1007/s11056-013-9363-y

    Article  Google Scholar 

  28. García-Amorena I, Manzaneque F, Gómez Rubiales JM, Granja HM, Soares de Carvalho G, Morla C (2007) The late quaternary coastal forests of western Iberia: a study of their macroremains. Palaeogeogr Palaeoclimatol Palaeoecol 254:448–461

    Article  Google Scholar 

  29. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139

    Article  Google Scholar 

  30. García-Valdés R, Zavala MA, Araújo MB, Purves DW (2013) Chasing a moving target: projecting climate change-induced shifts in non-equilibrial tree species distributions. J Ecol 101:441–453

    Article  Google Scholar 

  31. Gastón A, García-Viñas JI, Bravo-Fernández AJ, López-Leiva C, Oliet JA, Roig S, Serrada R (2014) Species distribution models applied to plant species selection in forest restoration: are model predictions comparable to expert opinion? New For 45:641–653

    Article  Google Scholar 

  32. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Article  Google Scholar 

  33. Gómez A, Aguiriano E, Alía R, Bueno MA (2002) Análisis de los recursos genéticos de Pinus pinea L. en España mediante microsatélites del cloroplasto. Invest Agr Sist Recur For 11:145–154

    Google Scholar 

  34. González-Muñoz N, Linares JC, Castro-Díez P, Sass-Klaassen U (2014) Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios. Eur J For Res 133:1073–1086. doi:10.1007/s10342-014-0823-5

    Article  Google Scholar 

  35. González-Salazar C, Stephens CR, Marquet PA (2013) Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecol Model 248:57–70

    Article  Google Scholar 

  36. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  37. Hidalgo PJ, Marin JM, Quijada J, Moreira JM (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manage 255:25–34. doi:10.1016/j.foreco.2007.07.012

    Article  Google Scholar 

  38. Ibáñez I, Katz DSW, Peltier D, Wolf SM, Barrie BTC (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess–multiresponse dynamics. J Ecol 102:882–895. doi:10.1111/1365-2745.12223

    Article  Google Scholar 

  39. IPCC (2007) Summary for policymakers climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

  40. Jacobs DF, Oliet JA, Aronson J, Bolte A, Bullock JM, Donoso PJ, Landhäusser SM, Madsen P, Peng S, Rey-Benayas JM, Weber JC (2015) Restoring forests: what constitutes success in the twenty-first century? New For 46:601–614. doi:10.1007/s11056-015-9513-5

    Article  Google Scholar 

  41. Jacobson MZ (2005) Fundamentals of atmospheric modeling, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  42. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768

    CAS  Article  PubMed  Google Scholar 

  43. López González GA (2007) Guía de los árboles y arbustos de la Península Ibérica y Baleares, 3rd edn. Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  44. López-Sáez JA, López-Merino L, Alba-Sánchez F, Pérez-Díaz S, Abel-Schaad D, Carrión JS (2010) Late Holocene ecological history of Pinus pinaster forests in the Sierra de Gredos of central Spain. Plant Ecol 206:195–209. doi:10.1007/s11258-009-9634-z

    Article  Google Scholar 

  45. López-Tirado J, Hidalgo PJ (2014) A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: a reliable management tool for reforestation. For Ecol Manage 330:105–114. doi:10.1016/j.foreco.2014.07.009

    Article  Google Scholar 

  46. Manso R, Pukkala T, Pardos M, Miina J, Calama R (2014) Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Can J Forest Res Rev Can Rech For 44:250–262. doi:10.1139/cjfr-2013-0179

    Article  Google Scholar 

  47. Márquez AL, Real R, Olivero J, Estrada A (2011) Combining climate with other influential factors for modelling the impact of climate change on species distribution. Clim Change 108:135–157. doi:10.1007/s10584-010-0010-8

    Article  Google Scholar 

  48. Martínez F, Montero G (2004) The Pinus pinea woodlands along the coast of Southwestern Spain: data for a new geobotanical interpretation. Plant Ecol 175:1–18

    Article  Google Scholar 

  49. Martínez F, Montero G, Ruiz-Peinado R, Cañellas I, Candela JA (2004) Geobotánica e historia de los Pinares. In: El pino piñonero (Pinus pinea L.) en Andalucía. Ecología, distribución y selvicultura. Junta de Andalucía, Consejería de Medio Ambiente Sevilla, pp 49–112

  50. Mateo RG, Felicisimo AM, Munoz J (2011) Species distributions models: a synthetic revision. Rev Chil Hist Nat 84:217–240

    Article  Google Scholar 

  51. Mellert KH, Fensterer V, Kuechenhoff H, Reger B, Koelling C, Klemmt HJ, Ewald J (2011) Hypothesis-driven species distribution models for tree species in the Bavarian Alps. J Veg Sci 22:635–646. doi:10.1111/j.1654-1103.2011.01274.x

    Article  Google Scholar 

  52. Montero M (1997) Breve descripción del proceso repoblador en España (1940–1995). Legno Celulosa Carta 4:35–42

    Google Scholar 

  53. Muñoz Álvarez JM (ed) (2010) Vegetación de la Reserva de la Biosfera y de los Espacios Naturales de Sierra Morena, Consejería de Medio Ambiente, Junta de Andalucía, Córdoba

  54. Nabais C, Campelo F, Vieira J, Cherubini P (2014) Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinaster and Pinus pinea along a latitudinal gradient in Portugal. Forestry 87:598–605. doi:10.1093/forestry/cpu021

    Article  Google Scholar 

  55. Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  56. Néeman G, Trabaud L (eds) (2000) Ecology, biogeography and management of Pinus halepensis and Pinus brutia forest ecosystems in the Mediterranean Basin. Backhuys Publication, Leiden

    Google Scholar 

  57. Olden JD, Jackson DA, Peres-Neto PP (2002) Predictive models of fish species distributions: a note on proper validation and chance predictions. Trans Am Fish Soc 131:329–336

    Article  Google Scholar 

  58. Parmesan C, Yohen G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  Article  PubMed  Google Scholar 

  59. Piedallu C, Gegout JC, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecol Biogeogr 22:470–482. doi:10.1111/geb.12012

    Article  Google Scholar 

  60. Rabasa SG, Granda E, Benavides R, Kunstler G, Espelta JM, Ogaya R, Peñuelas J, Scherer-Lorenzen M, Gil W, Grodzki W, Ambrozy S, Bergh J, Hódar JA, Zamora R, Valladares F (2013) Disparity in elevational shifts of European trees in response to recent climate warming. Glob Change Biol 19:2490–2499

    Article  Google Scholar 

  61. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  62. Richardson DM, Rundel PW (1998) Ecology and biogeography of Pinus: an introduction. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge

    Google Scholar 

  63. Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. Ministerio de Agricultura, Pesca y Alimentación, ICONA, Madrid

  64. Rubiales JM, García-Amorena I, García Álvarez S, Morla C (2009) Anthracological evidence suggests naturalness of Pinus pinaster in inland southwestern Iberia. Plant Ecol 200:155–160. doi:10.1007/s11258-008-9439-5

    Article  Google Scholar 

  65. Ruiz-Labourdette D, Nogues-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogeogr 39:162–176. doi:10.1111/j.1365-2699.2011.02592.x

    Article  Google Scholar 

  66. Sánchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernández-Cancio A (2010) Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain. For Syst 19(3):458–469

    Google Scholar 

  67. Sánchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernández-Cancio A (2012) Selective drought-induced decline of pine species in southeastern Spain. Clim Change 113:767–785

    Article  Google Scholar 

  68. Sarris D, Christodoulakis D, Koerner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Change Biol 13:1187–1200

    Article  Google Scholar 

  69. Sarris D, Christodoulakis D, Koerner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106:203–223. doi:10.1007/s10584-010-9901-y

    Article  Google Scholar 

  70. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  71. Soto A, Robledo-Arnuncio JJ, Gonzalez-Martinez SC, Smouse PE, Alia R (2010) Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol Ecol 19:1396–1409. doi:10.1111/j.1365-294X.2010.04571.x

    CAS  Article  PubMed  Google Scholar 

  72. Stevenson AC (1985) Studies in the Vegetational History of S. W. Spain. I. Modern pollen rain in the Doñana National Park, Huelva. J Biogeogr 12(3):243–268

    Article  Google Scholar 

  73. Strahler AN, Strahler AH (1989) Geografía Física. 3rd end, Editorial Omega S.A. Barcelona, p 539

  74. Sumarga E (2011) A comparison of logistic regression, geostatistics and Maxent for distribution modeling of a forest endemic; a pilot study on lobel’s maple at Mt. Pizzalto, Italy. Ph.D. Dissertation, University of Twente, The Netherlands

  75. Valle F (ed) (2004) Modelos de restauración forestal. Consejería de Medio Ambiente, Junta de Andalucía

  76. Vessella F, Schirone B (2013) Predicting potential distribution of Quercus suber in Italy based on ecological niche models: conservation insights and reforestation involvements. For Ecol Manage 304:150–161

    Article  Google Scholar 

  77. Vessella F, Simeone MC, Schirone B (2015) Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat Sci Rev 119:85–93

    Article  Google Scholar 

  78. Zavala MA, Zea K (2004) Mechanisms maintaining biodiversity in Mediterranean pine-oak forests: insights from a spatial simulation model. Plant Ecol 171:197–207

    Article  Google Scholar 

  79. Zhang L, Walker GR, Dawes WR (2002) Water balance modelling: concepts and applications. In: McVicar TR, Rui L, Walker J, Fitzpatrick RW, Liu C (eds) Regional water and soil assessment for managing sustainable agriculture in China and Australia, ACIAR Monograph 84, Canberra, pp 31–47

Download references

Acknowledgments

The authors are grateful to the Council of Economy, Innovation, Science and Employment of the Andalusian Regional Government for supporting this study in the framework of the project ‘‘Modelo espacial de distribución de las quercíneas y otras formaciones forestales de Andalucía: una herramienta para la gestión y la conservación del patrimonio natural” (Code P10-RNM-6013). This is the contribution no. 115 from the CEIMAR Journal Series.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier López-Tirado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Additional information on comparative areas between the reference period and each scenario is shown for stone pine. Only cells with a probability over 0.5 (as percentage next to each map) were taken into account. Green corresponds to area gained, purple indicates lost areas and blue shows stable areas. White denotes the absence of suitability for both period and scenario (TIFF 2767 kb)

ESM 2

Additional information on comparative areas between the reference period and each scenario is shown for Aleppo pine. For details, see caption to ESM 1 (TIFF 3540 kb)

ESM 3

Additional information on comparative areas between the reference period and each scenario is shown for cluster pine. For details, see caption to ESM 1 (TIFF 1001 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Tirado, J., Hidalgo, P.J. Ecological niche modelling of three Mediterranean pine species in the south of Spain: a tool for afforestation/reforestation programs in the twenty-first century. New Forests 47, 411–429 (2016). https://doi.org/10.1007/s11056-015-9523-3

Download citation

Keywords

  • Ecological niche modelling
  • Global change
  • Multinomial logistic regression
  • Mediterranean pines
  • Southern Spain
  • Afforestation/reforestation programs