New Forests

, Volume 46, Issue 5–6, pp 979–994 | Cite as

Testing scenarios for assisted migration of forest trees in Europe

  • Marta Benito-GarzónEmail author
  • Juan F. Fernández-Manjarrés


One approach to compensating for rapid climate change and protecting biodiversity is assisted migration (AM) of key tree species. However, tools for evaluating the sensitivity of target sites and identifying potential sources have not yet been developed. We used the National Forest Inventories of Spain and France to design scenarios for AM between and within both countries. We characterized sensitivity to climate change as the expected changes in volume and mortality of Pinus halepensis Miller and Pinus pinaster Aiton between the present and 2050. Target zones were selected from provenances with high sensitivity and seed zones from provenances with low sensitivity to climate change; the latter can be considered “seed refugia” as the climate changes. Three plausible scenarios for translocation to the target zone were developed on the basis of volume simulations calibrated with different planting strategies: (1) seeds only from foreign provenances; (2) foreign provenances plus local seeds; and (3) only local seeds. The results for both species show that models based on foreign “top-three” provenances always increased the standing volume of the target zone. Models run with only local seeds predicted increased volume for P. halepensis but not for P. pinaster. Our results suggest that volume and mortality trends are not always correlated with seed sources and targets, that projected provenances mortality do not follow always a southern–northern pattern and that seed refugia, if any, may be useful for compensating for the effects of climate change only in a subset of provenances.


Translocation National Forest Inventory Pinus pinaster Pinus halepensis Climate change adaptation Europe 



This work was supported by the National Science Agency (ANR)-funded project “Ecological and Legal Tools for the Assisted Migration of Forests in France (AMTools)”. MBG was supported by a Marie Curie individual fellowship FPT7-PEOPLE-2012-IEF “Assisted migration of forests as a climate change economic mitigation strategy (AMECO)”. We thank Paloma Ruiz-Benito for her assistance with the raw data from the Spanish National Forest Inventory. We thank Aurélien Brochet from IRSTEA and David Sánchez Ron from CIFOR-INIA for making available the GIS layers from the French and Spanish provenance regions.

Supplementary material

11056_2015_9481_MOESM1_ESM.docx (8.8 mb)
Supplementary material 1 (DOCX 9034 kb)


  1. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  2. Atzmon N, Moshe Y, Schiller G (2004) Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecol 171:15–22CrossRefGoogle Scholar
  3. Aubin I, Garbe C, Colombo S et al (2011) Why we disagree about assisted migration1: ethical implications of a key debate regarding the future of Canada’s forests. For Chron 87:755–765CrossRefGoogle Scholar
  4. Benito Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20:766–778. doi: 10.1111/j.1466-8238.2010.00646.x CrossRefGoogle Scholar
  5. Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, Fernández-Manjarrés J (2013a) Habitat restoration and climate change: dealing with climate variability, incomplete data, and management decisions with tree translocations. Restor Ecol 21:530–536CrossRefGoogle Scholar
  6. Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, Fernandez-Manjarrés JF (2013b) Extreme climate variability should be considered in forestry-assisted migration. Bioscience. doi: 10.1525/bio.2013.63.5.20 Google Scholar
  7. Benito-Garzón M, Ruiz-Benito P, Zavala MA (2013c) Inter-specific differences in tree growth and mortality responses to environmental drivers determine potential species distribution limits in Iberian forests. Glob Ecol Biogeogr 22:1141–1151CrossRefGoogle Scholar
  8. Breiman L (2001) Random forests. Mach Learn 45:5–32. doi: 10.1023/A:1010933404324 CrossRefGoogle Scholar
  9. Carnicer J, Coll M, Ninyerola M et al (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478. doi: 10.1073/pnas.1010070108 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Fernández-Manjarrés JF, Tschanz L (2010) Assisted colonization: protect managed forests. Science 330(80):1319. doi: 10.1126/science.330.6009.1319-a CrossRefPubMedGoogle Scholar
  11. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Change 62:195–209CrossRefGoogle Scholar
  12. Hewitt N, Klenk N, Smith AL et al (2011) Taking stock of the assisted migration debate. Biol Conserv 144:2560–2572. doi: 10.1016/j.biocon.2011.04.031 CrossRefGoogle Scholar
  13. Hijmans R, Cameron S, Parra J et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  14. Klein T, Cohen S, Yakir D (2011) Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol 31:637–648. doi: 10.1093/treephys/tpr047 CrossRefPubMedGoogle Scholar
  15. Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2:18–22
  16. Lunt ID, Byrne M, Hellmann JJ et al (2013) Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change. Biol Conserv 157:172–177. doi: 10.1016/j.biocon.2012.08.034 CrossRefGoogle Scholar
  17. Millar C, Stephenson N, Stephens S (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151CrossRefPubMedGoogle Scholar
  18. Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341(80):504–508. doi: 10.1126/science.1237190 CrossRefPubMedGoogle Scholar
  19. Neff MW, Larson BMH (2014) Scientists, managers, and assisted colonization: four contrasting perspectives entangle science and policy. Biol Conserv 172:1–7. doi: 10.1016/j.biocon.2014.02.001 CrossRefGoogle Scholar
  20. O’Neill GA, Nigh G (2011) Linking population genetics and tree height growth models to predict impacts of climate change on forest production. Glob Chang Biol 17:3208–3217. doi: 10.1111/j.1365-2486.2011.02467.x CrossRefGoogle Scholar
  21. O’Neill GA, Hamann A, Wang T (2008) Accounting for population variation improves estimates of the impact of climate change on species growth and distribution. J Appl Ecol 45:1040–1049. doi: 10.1111/j.1365-2664.2008.01472.x CrossRefGoogle Scholar
  22. Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol Evol 3:437–449. doi: 10.1002/ece3.426 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Pedlar JH, McKenney DW, Aubin I et al (2012) Placing forestry in the assisted migration debate. Bioscience 62:835–842CrossRefGoogle Scholar
  24. Pretzsch H, Biber P, Schütze G et al (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967. doi: 10.1038/ncomms5967 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Purves DW (2009) The demography of range boundaries versus range cores in eastern US tree species. Proc R Soc B 276:1477–1484. doi: 10.1098/rspb.2008.1241 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Richardson DM, Hellmann JJ, McLachlan JS et al (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci USA 106:9721–9724. doi: 10.1073/pnas.0902327106 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Schwartz MW, Hellmann JJ, Mclachlan JM et al (2012) Managed relocation: integrating the scientific, regulatory, and ethical challenges. Bioscience 62:732–743. doi: 10.1525/bio.2012.62.8.6 CrossRefGoogle Scholar
  28. Valladares F, Matesanz S, Araujo MB et al (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364CrossRefPubMedGoogle Scholar
  29. Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215. doi: 10.1078/1433-8319-00083 CrossRefGoogle Scholar
  30. Williams SE, Shoo LP, Isaac JL et al (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6:2621–2626. doi: 10.1371/journal.pbio.0060325 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marta Benito-Garzón
    • 1
    • 2
    • 3
    • 4
    Email author
  • Juan F. Fernández-Manjarrés
    • 1
  1. 1.CNRS, Laboratoire d’Ecologie, Systématique et EvolutionUMR 8079 Université Paris-Sud-CNRS-AgroParisTechOrsay CedexFrance
  2. 2.CNRSCentre International de Recherche sur l’Environnement et le Développement (CIRED)Nogent-sur-Marne CedexFrance
  3. 3.UMR 1202 BIOGECOUniversité de BordeauxTalenceFrance
  4. 4.UMR 1202 BIOGECOINRACestasFrance

Personalised recommendations