New Forests

, Volume 46, Issue 3, pp 319–337 | Cite as

Early performance of planted hybrid larch: effects of mechanical site preparation and planting depth

  • Mario Buitrago
  • Alain PaquetteEmail author
  • Nelson Thiffault
  • Nicolas Bélanger
  • Christian Messier


Some site preparation is generally recommended to enhance the growth and survival of planted and naturally regenerated seedlings, but it must be justified both economically and environmentally. More severe preparation is thought to be necessary for intensive plantation silviculture, e.g., using fast-growing, ameliorated stocks, especially in boreal ecosystems. Although not justified scientifically, deep-planting of seedlings is often discouraged and may even be financially penalized in eastern Canada. We thus evaluated early seedling growth and survival of hybrid larch (Larix × marschlinsii Coaz) in an experiment including mechanical site preparation and planting depth treatments. Our results suggest that satisfactory early hybrid larch establishment and growth could be met using low environmental impact or low cost treatments (such as soil inversion using an excavator or single-pass disk trenching), and that deeper planting has no negative effect. Structural equation modelling (SEM) was used to explore causal relationships between factors influencing seedling performance at the local scale (planting microsites), including soil moisture, soil temperature, surrounding vegetation, and seedling nutrition. SEM analysis supported the absence of overall differences among treatments, while also highlighting the negative impact of increased soil water content where drainage was suboptimal, as well as the unexpected positive impact of increased competition on growth mostly through seedling nutrition, among others. These early observations will need to be confirmed over a longer period, as well as with a more comprehensive assessment of site environmental conditions and competition intensity.


Structural equation modelling (SEM) Planting microsite Hybrid larch Mechanical site preparation Forest functional zoning (TRIAD) Intensive silviculture Planting depth 



We thank P. Gaucher, C. Jenkins, M. Hänsel, É. Rousselle, T. André, Y. Gauthier, J. Carignan, S. Lemay, D. Létourneau and E. Gaillard for their technical support, D. Lesieur for his help in database management, I. Auger for her constructive advice regarding the statistical analyses, as well as M. Girard and many others at Resolute Forest Products (Mauricie, QC). Larch hybrids used in this study are the result of continuous selection efforts from the Québec provincial nurseries. We are indebted to D. Craven, D. Kneeshaw, B. Harvey, two anonymous reviewers and the Associate Editor who provided helpful comments on an earlier version of the manuscript, as well as W.F.J. Parsons (CEF) for language revision. This study is part of the TRIAD initiative, with the collaboration of the Direction de la recherche forestière of the Ministère des Forêts, de la Faune et des Parcs du Québec (project 142332106), MITACS, and Resolute Forest Products.

Supplementary material

11056_2014_9463_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)


  1. Balandier P, Collet C, Miller JH, Reynolds PE, Zedaker SM (2006) Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 79:3–27CrossRefGoogle Scholar
  2. Barrette M, Leblanc M, Thiffault N, Paquette A, Lavoie L, Bélanger L, Bujold F, Côté L, Lamoureux J, Schneider R, Tremblay J-P, Côté S, Boucher Y, Deshaies M-È (2014) Issues and solutions for intensive plantation silviculture in a context of ecosystem management. For Chron (in press)Google Scholar
  3. Bergès L, Chevalier R (2001) Les exigences écologiques des mélèzes. In: Riou-Nivert P (ed) Le mélèze. Institut pour le développement forestier (IDF), Paris, pp 52–59Google Scholar
  4. Bilodeau-Gauthier S, Paré D, Messier C, Bélanger N (2013) Root production of hybrid poplars and nitrogen mineralization improve following mounding of boreal Podzols. Can J For Res 43(12):1092–1103. doi: 10.1139/cjfr-2013-0338 CrossRefGoogle Scholar
  5. Boateng JO, Heineman JL, McClarnon J, Bedford L (2006) Twenty year responses of white spruce to mechanical site preparation and early chemical release in the boreal region of northeastern British Columbia. Can J For Res 36(10):2386–2399CrossRefGoogle Scholar
  6. Boucher J-F, Bernier P, Munson A (2001) Radiation and soil temperature interactions on the growth and physiology of eastern white pine (Pinus strobus L.) seedlings. Plant Soil 236(2):165–174CrossRefGoogle Scholar
  7. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96(1):18–34Google Scholar
  8. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. TREE 18:119–125Google Scholar
  9. Bullock JM (2006) Chapter 4: plants. In: Sutherland WJ (ed) Ecological census techniques, 2nd edn. Cambridge University Press, New York, pp 186–213CrossRefGoogle Scholar
  10. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965CrossRefGoogle Scholar
  11. Carter KK, Selin LO (1987) Larch plantation management in the northeast. North J Appl For 4(1):18–20Google Scholar
  12. de Chantal M, Rita H, Bergsten U, Löfvenius M, Grip H (2009) Frost heaving of Picea abies seedlings as influenced by soil preparation, planting technique, and location along gap-shelterwood gradients. Silva Fenn 43(1):39–50CrossRefGoogle Scholar
  13. Gagné P, Paquette A (2008) Revue de la littérature sur la préparation de terrain mécanique pour les mélèzes. Réseau Ligniculture Québec, QuébecGoogle Scholar
  14. Gemmel P, Nilsson U, Welander T (1996) Development of oak and beech seedlings planted under varying shelterwood densities and with different site preparation methods in southern Sweden. New For 12:141–161Google Scholar
  15. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294CrossRefGoogle Scholar
  16. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43:711–738CrossRefGoogle Scholar
  17. Grossnickle SC, Heikurinen J (1989) Site preparation: water relations and growth of newly planted jack pine and white spruce. New For 3:99–123CrossRefGoogle Scholar
  18. Hallsby G, Örlander G (2004) A comparison of mounding and inverting to establish Norway spruce on podzolic soils in Sweden. Forestry 77(2):107–117CrossRefGoogle Scholar
  19. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78(7):1966–1975CrossRefGoogle Scholar
  20. Hooper D, Coughlan J, Mullen M (2008) Structural equation modelling: guidelines for determining model fit. EJBRM 6:53–60Google Scholar
  21. Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Physiological ecology. Academic Press, San DiegoGoogle Scholar
  22. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, New YorkGoogle Scholar
  23. Lei P-W, Wu Q (2007) Introduction to structural equation modeling: issues and practical considerations. EM:IP 26(3):33–43. doi: 10.1111/j.1745-3992.2007.00099.x Google Scholar
  24. Löf M, Dey DC, Navarro RM, Jacobs DF (2012) Mechanical site preparation for forest restoration. New For 43(5–6):825–848CrossRefGoogle Scholar
  25. Longpré M-H, Bergeron Y, Paré D, Béland M (1994) Effect of companion species on the growth of jack pine (Pinus banksiana). Can J For Res 24:1846–1853CrossRefGoogle Scholar
  26. MacLean DA, Wein RW (1978) Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Can J Bot 56(21):2730–2749CrossRefGoogle Scholar
  27. Margolis HA, Brand DG (1990) An ecophysiological basis for understanding plantation establishment. Can J For Res 20:375–390CrossRefGoogle Scholar
  28. Messier C, Bigué B, Bernier L (2003) Using fast-growing plantations to promote forest ecosystem protection in Canada. Unasylva 54:59–63Google Scholar
  29. Messier C, Tittler R, Kneeshaw DD, Gélinas N, Paquette A, Berninger K, Rheault H, Meek P, Beaulieu N (2009) TRIAD zoning in Quebec: experiences and results after five years. For Chron 85(6):885–896CrossRefGoogle Scholar
  30. Miller H (1995) The influence of stand development on nutrient demand, growth and allocation. Plant Soil 168–169(1):225–232. doi: 10.1007/BF00029332 CrossRefGoogle Scholar
  31. Munson AD, Margolis HA, Brand DG (1993) Intensive silvicultural treatment: impacts on soil fertility and planted conifer response. Soil Sci Soc Am J 57:246–255CrossRefGoogle Scholar
  32. Örlander G, Gemmel P, Hunt J (1990) Site preparation: a Swedish overview. Forestry Canada, British Columbia Ministry of Forests, VictoriaGoogle Scholar
  33. Örlander G, Hallsby G, Gemmel P, Wilhelmsson C (1998) Inverting improves establishment of Pinus contorta and Picea abies: 10-year results from a site preparation trial in northern Sweden. Scand J For Res 13(2):160–168CrossRefGoogle Scholar
  34. Pallardy SG (2010) Transpiration, Plant Water Balance and Adaptation to Drought. In: Physiology of woody plants. Academic Press, San Diego, pp 325–366Google Scholar
  35. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8(1):27–34. doi: 10.1890/080116 CrossRefGoogle Scholar
  36. Paquette A, Messier C (2013) Chapter 13—managing tree plantations as complex adaptive systems. In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. EarthScan, New York, pp 299–326Google Scholar
  37. Paquette A, Girard J-P, Walsh D (2011) Deep planting has no short or long-term effect on the survival and growth of white spruce, black spruce and jack pine. North J Appl For 28(3):146–151Google Scholar
  38. Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant 6:1–11CrossRefGoogle Scholar
  39. Prévost M (1992) Effets du scarifiage sur les propriétés du sol, la croissance des semis et la compétition: revue des connaissances actuelles et perspectives de recherches au Québec. Ann For Sci 49(3):277–296CrossRefGoogle Scholar
  40. Prévost M, Dumais D (2003) Croissance et statut nutritif de marcottes, de semis naturels et de plants d’épinette noire à la suite du scarifiage: résultats de 10 ans. Can J For Res 33(11):2097–2107CrossRefGoogle Scholar
  41. Prévost M, Thiffault N (2013) La préparation de terrain. In: Larouche C, Guillemette F, Raymond P, Saucier J-P (eds) Le guide sylvicole du Québec, Tome 2 - Les concepts et l’application de la sylviculture. Ministère des Ressources naturelles, Les publications du Québec, Québec, pp 134–157Google Scholar
  42. Pugesek BH, Tomer A, von Eye A (eds) (2003) Structural equation modeling: applications in ecological and evolutionary biology. Cambridge University Press, CambridgeGoogle Scholar
  43. Qu LY, Kitaoka S, Makoto K, Kuromaru M, Osaki M, Sasa K, Utsugi H, Koike T (2009) Root–shoot communication of the seedlings of Japanese larch and a hybrid species grown in different soil-temperature regimes. Landsc Ecol Eng 5(2):115–123CrossRefGoogle Scholar
  44. R Development Core Team (2008) R: a language and environment for statistical computing version 2.8.1 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  45. Robbins K (1985) Risks associated with growing non-native larches in eastern North America. North J Appl For 2(4):101–104Google Scholar
  46. Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48(2):1–36Google Scholar
  47. Sahlén K, Goulet F (2002) Reduction of frost heaving of Norway spruce and Scots pine seedlings by planting in mounds or in humus. New For 24(3):175–182. doi: 10.1023/a:1021378228524 CrossRefGoogle Scholar
  48. Saucier JP, Grondin P, Robitaille A, Gosselin J, Morneau C, Richard PJH, Brisson J, Sirois L, Leduc A, Morin H, Thiffault É, Gauthier S, Lavoie C, Payette S (2009) Cadre bioclimatique du Québec. In: Ordre des ingénieurs forestiers du Québec (ed) Manuel de foresterie, 2nd ed. Éditions Multimondes, Québec, QC, pp 186–205Google Scholar
  49. Schwan T (1994) Planting depth and its influence on survival and growth. A literature review with emphasis on jack pine, black spruce and white spruce. Northeast Science & Technology, TimminsGoogle Scholar
  50. Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Sutherland BJ, Foreman FF (1995) Guide to the use of mechanical site preparation equipment in northwestern Ontario. Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste, MarieGoogle Scholar
  52. Sutton RF (1993) Mounding site preparation: a review of European and North American experience. New For 7(2):151–192CrossRefGoogle Scholar
  53. Sutton RF (1995) Advantages of deep planting black spruce. Canadian Forest Service, Sault Ste, MarieGoogle Scholar
  54. Tarroux E, DesRochers A, Girard J-P (2014) Growth and root development of black and white spruce planted after deep planting. For Ecol Manage 318:294–303. doi: 10.1016/j.foreco.2014.01.032 CrossRefGoogle Scholar
  55. Thiffault N, Hébert F (2013) Le dégagement et le nettoiement. In: Larouche C, Guillemette F, Raymond P, Saucier J-P (eds) Le guide sylvicole du Québec, Tome 2 - Les concepts et l’application de la sylviculture. Ministère des Ressources naturelles, Les publications du Québec, Québec, pp 244–271Google Scholar
  56. Thiffault N, Jobidon R (2006) How to shift unproductive Kalmia angustifoliaRhododendron groenlandicum heath to productive conifer plantation. Can J For Res 36(10):2364–2376CrossRefGoogle Scholar
  57. Thiffault N, Roy V (2011) Living without herbicides in Québec (Canada): historical context, current strategy, research and challenges in forest vegetation management. Eur J Forest Res 130(1):117–133. doi: 10.1007/s10342-010-0373-4 CrossRefGoogle Scholar
  58. Thiffault N, Cyr G, Prégent G, Jobidon R, Charette L (2004) Régénération artificielle des pessières noires à éricacées : effets du scarifiage, de la fertilisation et du type de plants après 10 ans. For Chron 80(1):141–149CrossRefGoogle Scholar
  59. Thiffault N, Fenton NJ, Munson AD, Hébert F, Fournier RA, Valeria O, Bradley RL, Bergeron Y, Grondin P, Paré D (2013) Managing understory vegetation for maintaining productivity in black spruce forests: a synthesis within a multi-scale research model. Forests 4(3):613–631CrossRefGoogle Scholar
  60. Ung CH, Végiard S (1988) Problèmes d’inférence statistique reliés à la transformation logarithmique en régression. Can J For Res 18:733–738CrossRefGoogle Scholar
  61. Végiard S, Ung CH (1993) Statistical inference problems related to the logarithmic transformation in regression: another method for interval estimation. Can J For Res 23:871–872CrossRefGoogle Scholar
  62. von der Gonna MA (1992) Fundamentals of mechanical site preparation. Forestry Canada, Pacific Forestry Centre, copublished by the BC Ministry of Forests, Victoria, BCGoogle Scholar
  63. Walstad JD, Kuch PJ (1987) Forest vegetation management for conifer production. Wiley, New YorkGoogle Scholar
  64. Zhao F, Yang J, Liu Z, Dai L, He HS (2011) Balancing multiple objectives using a classification-based forest management system in Changbai mountains, China. Environ Manag 48(6):1136–1147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mario Buitrago
    • 1
  • Alain Paquette
    • 1
    Email author
  • Nelson Thiffault
    • 1
    • 2
  • Nicolas Bélanger
    • 1
    • 3
  • Christian Messier
    • 1
    • 4
  1. 1.Centre for Forest Research (CEF)Université du Québec à MontréalMontréalCanada
  2. 2.Direction de la recherche forestièreMinistère des Forêts, de la Faune et des Parcs du QuébecQuébecCanada
  3. 3.Téluq, Université du QuébecMontréalCanada
  4. 4.Institut des Sciences de la Forêt Tempérée (ISFORT)Université du Québec en OutaouaisRiponCanada

Personalised recommendations