New Forests

, Volume 46, Issue 2, pp 217–233 | Cite as

Effects of soil nutrients and environmental factors on site productivity in Castanea sativa Mill. coppice stands in NW Spain

  • María Menéndez-MiguélezEmail author
  • Pedro Álvarez-Álvarez
  • Juan Majada
  • Elena Canga


Ecological behaviour and productive capacity of chestnut (Castanea sativa Mill.) coppice stands are key factors in predicting forest growth and subsequent management decision, especially in areas where timber production is the primary objective. The effects of soil nutrients and environmental factors on site productivity in chestnut coppice stands in North-West Spain were studied. Site productivity described by site index was related to environmental characteristics, including edaphic, physiographic and climatic variables. The key factors affecting site productivity were evaluated according to two different statistical analyses: the CHAID procedure and parametric regression techniques. The CHAID algorithm applied separately to each type of variable revealed that the most important to explain SI were edaphic (sand and clay percentage, pH, stoniness) and climatic variables (summer and spring precipitation and mean annual temperature) (24 and 47 %, respectively). According to the regression tree and the parametric regression model for all variables, summer precipitation was the most significant variable (51 and 53 %, respectively). The results show the importance of climatic variables for chestnut coppice stands growth and provide further information about the ecology of the species in North-West Spain. The use of specimens from sites representing a wide range of habitats/growing conditions of this species means that both the results and methodology described here are of great relevance for improving the management of this species throughout its European range.


Chestnut coppice Site index Environmental factors CHAID procedure Parametric regression 



The authors thank Forest Services (Government of the Principality of Asturias), and the private owners who allowed the establishment of the permanent plots necessary for the development of the study. This study was supported by the Spanish Ministry of Science and Innovation (MICIN) and the Plan for Science, Technology and Innovation of the Principality of Asturias (PCTI) as part of the research project “Forest and industrial evaluation of Spanish chestnut” (VALOCAS).


  1. Afif-Khouri E, Álvarez-Álvarez P, Fernández-López MJ, Oliveira-Prendes JA, Cámara-Obregón A (2011) Influence of climate, edaphic factors and tree nutrition on site index of chestnut coppice stands in north-west Spain. Forestry 84(4):385–396. doi: 10.1093/forestry/cpr025 CrossRefGoogle Scholar
  2. Álvarez-Álvarez P, Díaz-Varela E, Cámara-Obregón A, Afif-Khouri E (2010) Relating growth and nutrition to site factors in Young chestnut plantations established on agricultural and forest land in northern Spain. Agrofor Syst 79:291–301. doi: 10.1007/s10457-010-9313-z CrossRefGoogle Scholar
  3. Álvarez-Álvarez P, Afif-Khouri E, Cámara-Obregón A, Castedo-Dorado F, Barrio-Anta M (2011) Effects of foliar nutrients and environmental factors on site productivity in Pinus pinaster Ait. stands in Asturias (NW Spain). Ann For Sci 68:497–509. doi: 10.1007/s13595-011-0047-5 CrossRefGoogle Scholar
  4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544Google Scholar
  5. Berrocal M, Gallardo JF, Cardeñoso JM (1998) El castaño. Mundi-Prensa, MadridGoogle Scholar
  6. Bourgeois C (1992) Le châtaignier, un arbre, un bois. Institut pour le développement forestier, ParisGoogle Scholar
  7. Brethes A, Nys C (1975) Effects des résineux sur la fertilité des sols. Difficulté des recherches et premiers résultats. Soil Sci 1:3–18Google Scholar
  8. Burkhart HE, Tomé M (2012) Modelling forest trees and stands. Springer, BerlinCrossRefGoogle Scholar
  9. Cabrera BM, Ochoa F (1997) Tablas de producción de castaño (Castanea sativa Mill.) tratado en monte bajo, en Asturias. In: Puertas F, Rivas M (eds) II Congreso Forestal Español-Irati 97. Pamplona, Spain, pp 131–136Google Scholar
  10. Carmean WH (1970) Tree growth patterns in relation to soil and site index. In: Tree growth and forest soils. Oregon State University, CorvallisGoogle Scholar
  11. Carter RE, Klinka K (1990) Relationship between growing season soil water-deficit, mineralizable soil nitrogen and site index in Coastal Douglas fir. For Ecol Manag 30:301–311. doi: 10.1016/0378-1127(90)90144-Z CrossRefGoogle Scholar
  12. CEMAGREF (1987) Guide technique du forestier méditerranéen françaisGoogle Scholar
  13. Chen HYH, Klinka K, Kabzems RD (1998) Site index, site quality, and foliar nutrients of trembling aspen: relationships and predictions. Can J For Res 28:1743–1755. doi: 10.1139/x98-154 CrossRefGoogle Scholar
  14. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 847–940Google Scholar
  15. Cieszewski CJ (2002) Comparing fixed-and variable-base-age site equations having single versus multiple asymptotes. For Sci 48:7–23Google Scholar
  16. Cieszewski CJ, Bailey RL (2000) Generalized algebraic difference approach: a new methodology for derivation of biologically based dynamic site equations. For Sci 46:116–126Google Scholar
  17. Cieszewski CJ, Harrison M, Martin SW (2000) Practical methods for estimating non-biased parameters in self-referencing growth and yield models. University of Georgia, Athens. PMRC-TR 2000-7Google Scholar
  18. Clutter J, Fortson J, Pienaar L, Brister H, Bayley R (1983) Timber management: a quantitative approach. Wiley, New YorkGoogle Scholar
  19. DGCN (2013) III Mapa Forestal de España. MFE50. 1:50000. Ministerio de Medio Ambiente, Madrid, EspañaGoogle Scholar
  20. Díaz Varela RA, Calvo Iglesias MS, Díaz Varela ER, Ramil Rego P, Crecente Maseda R (2009) Castanea sativa forests: a threatened cultural landscape in Galicia NW Spain. In: Krzywinski K, O’Connell M, Küster H (eds) Cultural landscapes of Europe. Fields of demeter haunts of pan. Aschembeck Media UG, Bremen, pp 94–95Google Scholar
  21. Fontes L, Tomé M, Thompson F, Yeomans A, Sales Luis J, Savill P (2003) Modelling the Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) site index from site factors in Portugal. Forestry 76:491–507. doi: 10.1093/forestry/76.5.491 CrossRefGoogle Scholar
  22. Gallardo-Lancho JF (2001) Distribution of chestnut (Castanea sativa Mill.) forests in Spain: possible ecological criteria for quality and management (focusing on timer coppices). For Snow Landsc Res 76(3):477–481Google Scholar
  23. Gandullo JGM, Blanco-Andray A, Sánchez-Palomares O, Rubio-Sánchez A, Elena-Roselló R, Gómez-Sanz V (2004) Las estaciones ecológicas de los castañares españoles. Monografías INIA: Serie Forestal No 7, Madrid, SpainGoogle Scholar
  24. Gee GW, Bauder JW (1996) Particle size analysis. In: Methods of soil analysis, part 1, 2nd edn. American Society of Agronomy, Madison, pp 383–411Google Scholar
  25. Goelz JCG, Burk TE (1992) Development of a well-behaved site index equation: jack pine in north central Ontario. Can J For Res 22:776–784. doi: 10.1139/x92-106 CrossRefGoogle Scholar
  26. Hahn JT, Carmean WH (1982) Lake States site index curves formulated. USDA For. Serv Gen Tech Rep NC-88Google Scholar
  27. Hardham AR (2005) Phytophtora cinnamomi. Mol Plant Pathol 6(6):589–604. doi: 10.1111/j.1364-3703.2005.00308.x
  28. Hill T, Lewicki P (2006) Statistics: methods and applications: a comprehensive reference for science, industry, and data mining. Stat Soft IncGoogle Scholar
  29. IDF (1991) Quelques nouvelles. Pour vos plantations de châtaigniers. Forêt Enterp 78(6):2Google Scholar
  30. IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution to Working Group I in the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  31. Kass G (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat 29:119–127. doi: 10.2307/2986296 CrossRefGoogle Scholar
  32. Kauppi A, Kiviniitty M (1990) Leaf morphology and photosynthetic rate in birch seedlings and stump sprouts. Can J For Res 20:952–960. doi: 10.1139/x90-128 CrossRefGoogle Scholar
  33. Lebourgeois F (2007) Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French Permanent Plot Network (RENECOFOR). Ann For Sci 64:243–333. doi: 10.1051/forest:2007010 CrossRefGoogle Scholar
  34. Lemaire J (2008) Autécologie du châtaignier: un fougueux qui craint la sécheresse! Forêt Enterp 179:18–24Google Scholar
  35. López J (1991) Dossier: Le châtaignier en Europe; Espagne: De la Galice à la Catalogne, une situation diversifiée. Forêt Enterp 76(4):28–32Google Scholar
  36. MARM (2011) Avance del Anuario de Estadística Forestal. Área de Medio Ambiente, Madrid, EspañaGoogle Scholar
  37. Martínes LM, Oliveira MT, Abreu CG (1999) Soils and climatic characteristics of chestnut stands that differ on the presence of ink disease. In: Salesses G (ed) Proceedings of 2nd international chestnut symposium. Acta Horticulturae, Bordeaux, pp 447–449Google Scholar
  38. Menéndez-Miguélez M, Canga E, Barrio-Anta M, Majada J, Álvarez-Álvarez P (2013) A three level system for estimating the biomass of Castanea sativa Mill. coppice stands in north-west Spain. For Ecol Manag 291:417–426. doi: 10.1016/j.foreco.2012.11.040 CrossRefGoogle Scholar
  39. Monserud RA, Moody U, Breuer DW (1990) A soil-site study for inland Douglas-fir. Can J For Res 20:686–695. doi: 10.1139/x90-092 CrossRefGoogle Scholar
  40. Nageleisen LM (1994) Le dépérissement actuel de feuillus divers: Hêtre, Merisier, Alisier torminal, Érable sycomore, Peuplier, Châtaignier, Charme, Aulne glutineux. Revue Forestière Française 5:54–562Google Scholar
  41. Payandeh B (1977) Metric site index formulae for major Canadian timber species. Bimon Res Notes 33(5):37–39Google Scholar
  42. Pereira MG, Caramelo L, Gouveia C, Gomes-Laranjo J, Magalhães M (2011) Assessment of weather-related risk on chestnut productivity. Nat Hazards Earth Syst Sci 11:2729–2739. doi: 10.5194/nhess-11-2729-2011 CrossRefGoogle Scholar
  43. Pichard G (1994) La regeneration naturelle assistée du châtaignier en Bretagne. Une method désormaisé prouvée. Forêt de France 355:27–29Google Scholar
  44. Queijeiro JM, Díaz-Raviña M, de la Montana J (2000) Edaphic characterization of chestnut tree orchards in Monterrey (Southeast Galicia, Spain). Ecol Mediterr 26(1–2):163–167Google Scholar
  45. Rameau JC, Mansion D, Dume G (1993) Flore Forestière Française 2 Montagnes, IDFGoogle Scholar
  46. Rayner ME (1992) Evaluation of site classifications for modelling timber yield of regrowth karri (Eucalyptus divericolor F. Muell.). For Ecol Manag 54:315–336. doi: 10.1016/0378-1127(92)90020-A CrossRefGoogle Scholar
  47. Ringius GS, Sims RA, Meades SJ (1997) Indicator plant species in Canadian forests. Can For Serv, OttawaGoogle Scholar
  48. Rinne P, Saarelainen A, Junttila O (1994) Growth cessation and bud dormancy in relation to ABA level in seedlings and coppice shoots of Betula pubescens as affected by a short photoperiod, water stress and chilling. Physiol Plant 90:451–458. doi: 10.1111/j.1399-3054.1994.tb08801.x CrossRefGoogle Scholar
  49. Romanyà J, Vallejo VR (2004) Productivity of Pinus radiata plantation in Spain in response to climate and soil. For Ecol Manag 195:177–189. doi: 10.1016/j.foreco.2004.02.045 CrossRefGoogle Scholar
  50. Rubio A, Gandullo JM (1994) Modelos predictivos de la estructura selvícola en castañares extremeños (España). Ecología 8:137–150Google Scholar
  51. Rubio A, Sánchez-Palomares O (2006) Physiographic and climatic potential areas for Fagus sylvatica based on habitat suitability indicator models. Forestry 79:439–451. doi: 10.1093/forestry/cpl025 CrossRefGoogle Scholar
  52. Rubio A, Escudero A, Gandullo JM (1997) Sweet chestnut silviculture in an ecological extreme of its range in the west of Spain (Extremadura). Ann Sci For 54:667–680. doi: 10.1051/forest:19970707 CrossRefGoogle Scholar
  53. Rubio A, Elena R, Sánchez-Palomares O, Blanco A, Sánchez F, Gómez V (2002a) Soil evaluation for Castanea sativa afforestation in Northeastern Spain. New For 23:131–141. doi: 10.1023/A:1015624014868 CrossRefGoogle Scholar
  54. Rubio A, Sánchez-Palomares O, Gómez V, Graña D, Elena R, Blanco A (2002b) Autoecología de los castañares de Castilla (España). Investigación Agraria Sistemas y Recursos Forestales 11(2):373–393Google Scholar
  55. Sánchez-Palomares O, Sánchez Serrano F, Carretero Carrero MP (1999) Modelos y cartografía de estimaciones climáticas termo pluviométricas para la España peninsular. INIA, Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  56. Sevrin E (1994) Améliorer les taillis de châtaignier. Fôret Enterp 97(4):13–14Google Scholar
  57. Snowdon P, Waring HD (1991) Effects of irrigation and artificial drought in the growth and health of Pinus radiata near Canberra, ACT. Aust For 54:174–186. doi: 10.1080/00049158.1991.10674574 CrossRefGoogle Scholar
  58. Splechtna BE (2001) Height growth and site index models for pacific silver fir in southwestern British Columbia. J Ecosyst Manag 1(1):1–14Google Scholar
  59. SPSS (2007) SPSS for Windows, Rel. 16 (1993–2007). SPSS Inc., ChicagoGoogle Scholar
  60. Van Diepen M, Franses HP (2006) Evaluating Chi squared automatic interaction detection. Inf Syst 31:814–831. doi: 10.1016/ CrossRefGoogle Scholar
  61. Waring RH, Running SW (2007) Forest ecosystems: analysis at multiple scales, 3rd edn. Academic Press, San DiegoGoogle Scholar
  62. Weiskittel AR, Hann DW, John A, Kershaw J, Vanclay JK (2011) Forest growth and yield modelling. Wiley, New YorkCrossRefGoogle Scholar
  63. Wilhelm E, Arthofer W, Schafleitner R, Krebs B (1998) Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectria parasitica). Plant Cell Tiss Org 52(1–2):105–108. doi: 10.1023/A:1005917906769

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • María Menéndez-Miguélez
    • 1
    • 3
    Email author
  • Pedro Álvarez-Álvarez
    • 2
  • Juan Majada
    • 1
  • Elena Canga
    • 1
  1. 1.Forest and Wood Technology Research Centre (CETEMAS)GradoSpain
  2. 2.Research Group in Atlantic Forests (GIS-Forest), Department of Organisms and Systems Biology, Escuela Politécnica de Mieres (E.P.M.)University of OviedoMieresSpain
  3. 3.Forest and Wood Technology Research Centre (CETEMAS)GradoSpain

Personalised recommendations