Modelling the scaling of stem growth with crown size and optimum stocking densities for systematic grid plantation of Faidherbia albida

Abstract

Faidherbia (Faidherbia albida) is being promoted widely in interventions for combating desertification, re-greening of the Sahel, carbon offset and various agroforestry projects. However, there is a dearth of information on its growth and canopy development. There are also no guidelines for optimum stocking densities for practitioners to follow. Therefore, the objective of this work was to evaluate scaling relationships between its growth in height, stem diameter and crown size and based on these relationships define stocking densities. In order to achieve this we: (1) modelled its growth in relation to plant density; (2) identified appropriate models for scaling stem height and diameter with crown size; (3) using information from step 2, we derived stocking densities under different scenarios. Crown diameter (CD) was found to scale with stem diameter (D) isometrically, while stem height scaled with CD allometrically. The scenarios derived using the CD–D scaling indicated that densities >50 plants ha−1 are untenable when DBH exceeds 40 cm. High initial densities (>625 plants ha−1) appear to lead to rapid self-thinning. Starting with low initial densities (<100 plants ha−1) was also expected to result in sub-optimal use of site resources and delayed net ecosystem production. As a compromise, we recommend establishment of stands at initial densities of about 625 trees ha−1 (or 4 m × 4 m spacing) and progressive thinning as stem diameter increases. The focus of this analysis has been on monoculture plantations of Faidherbia and the spacing may not be directly applicable where crops are integrated with trees. Therefore, we propose a follow-up study including modelling tree behaviour in mixed stands in order to refine recommendations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anfodillo T, Carrer M, Simini F, Popa I, Banavar JR, Maritan A (2012) An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. Proc R Soc B 280:20122375. doi:10.1098/rspb.2012.2375

    Article  Google Scholar 

  2. Barbier N, Couteron P, Lefever R, Deblauwe V, Lejeune O (2008) Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. Ecology 89:1521–1531

    PubMed  Article  Google Scholar 

  3. Barnes RD, Fagg CW (2003) Faidherbia albida: monograph and annotated bibliography. Oxford Forestry Institute. Tropical Forestry Papers 41. Oxford, UK

  4. Baumer M (1983) Faidherbia albida. In Notes on trees and shrubs in arid and semi-arid regions. Rome, Italy; EMASAR Phase II/FAD, Plant Production and Protection Division 165–181

  5. Boffa JM (1999) Agroforestry parklands in sub-Saharan Africa. FAO Conservation Guide 34. Rome, Italy

  6. Bosco SF (2012) Soil carbon variability and assessment in a corn cropping system in the United States and In Zambia. MSc Thesis, Cornell University

  7. CFU (2012) How to plant and look after Musangu. Leaflet No 5. http://conservationagriculture.org/uploads/pdf/Sowing%20%20Transplanting%20Faidherbia%202012.pdf (accessed 14/11/2013)

  8. Clark JS (1992) Density-independent mortality, density compensation, gap formation, and self-thinning in plant populations. Theor Popul Biol 42:172–198

    Article  Google Scholar 

  9. Dahle GA, Grabosky JC (2009) Review of literature on the function and allometric relationships of tree stems and branches. Arboricult Urb For 35:311–320

    Google Scholar 

  10. Dai X, Jia X, Zhang W, Bai Y, Zhang J, Wang Y, Wang G (2009) Plant height–crown radius and canopy coverage–density relationships determine above-ground biomass–density relationship in stressful environments. Biol Lett 5:571–573. doi:10.1098/rsbl.2009.0228

    PubMed Central  PubMed  Article  Google Scholar 

  11. Damgaard C, Weiner J (2008) Modelling the growth of individuals in crowded plant populations. J Plant Ecol 1:111–116. doi:10.1093/jpe/rtn008

    Article  Google Scholar 

  12. Dangasuk OG, Gudu SO, Okalebo JR (2011) Survival and soil nutrient changes during 5 years of growth of 16 Faidherbia albida provenances in semi-arid Baringo district, Kenya. In: Bationo A, Waswa B, Okeyo JM, Maina F, Kihara JM (eds) Innovations as key to the green revolution in Africa. Springer Science, Berlin, pp 227–234

    Chapter  Google Scholar 

  13. Dunham KM (1991) Comparative effects of Acacia albida and Kigelia africana trees on soil characteristics in Zambezi riverine woodlands. J Trop Ecol 7:215–220

    Article  Google Scholar 

  14. Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    CAS  Article  Google Scholar 

  15. Enquist BJ, West GB, Brown JH (2009) Extension and evaluations of a general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 106:7046–7051. doi:10.1073/pnas.0812303106

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Garrity DP, Akinnifesi FK, Ajayi OC, Sileshi GW, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur 2:197–214

    Article  Google Scholar 

  17. Harja D, Vincént G (2008) Spatially explicit individual-based forest simulator—user guide and software. World Agroforestry Centre (ICRAF) and Institut de Recherche pour le Développement (IRD)

  18. Ismail AMA (1986) The significance of crown architecture in Acacia albida in the Sudan. J Trop Ecol 2:51–54

    Article  Google Scholar 

  19. Jama LB, Getahun A (1991) Intercropping Acacia albida with maize (Zea mays) and green gram (Phaseolus aureus) at Mtwapa, Coast Province, Kenya. Agrofor Sys 14:193–205

    Article  Google Scholar 

  20. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. doi:10.1016/j.tree.2003.10.013

    PubMed  Article  Google Scholar 

  21. Kirmse RD, Norton BE (1984) The potential of Acacia albida for desertification control and increased productivity in Chad. Biol Conserv 29:121–141

    Article  Google Scholar 

  22. Kruschke JK (2013) Bayesian estimation supersedes the t test. J Exp Psychol 142:573–603. doi:10.1037/a0029146

    Article  Google Scholar 

  23. Li B-L, Wu H, Zou G (2000) Self-thinning rule: a casual interpretation from ecological field theory. Ecol Model 132:167–172

  24. Lin Y, Berger U, Grimm V, Huth F, Weiner J (2013) Plant interactions alter the predictions of metabolic scaling theory. PLoS ONE 8(2):e57612. doi:10.1371/journal.pone.0057612

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Liu Z, Li F (2003) The generalized Chapman-Richards function and applications to tree and stand growth. J Forest Res 14:19–26

  26. Lulandala L (1989) The Mafinga forestry experiments: main findings and recommendations. ICRAF 13434:2

    Google Scholar 

  27. Montagne P (1984) Faidherbia albida: son developpement au Niger. Resume de I 5 operation Gao—Dosso. Association Bois de Feu

  28. Niklas KJ, Midgley JJ, Enquist BJ (2003) A general model for mass–growth–density relations across tree-dominated communities. Evol Ecol Res 5:459–468

    Google Scholar 

  29. Okorio J, Maghembe JA (1994) The growth and yield of Acacia albida intercropped with maize (Zea mays) and beans (Phaseolus vulgaris) at Morogoro, Tanzania. Forest Ecol Manag 64:183–190

    Article  Google Scholar 

  30. Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height–crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94:1951–1962

    PubMed  Article  Google Scholar 

  31. Phombeya HSK (1999) Nutrient sourcing and recycling by Faidherbia albida trees in Malawi. PhD thesis University of London, London, UK

  32. Piñeiro G, Perelman S, Guerschman JP, Paruelo JM (2008) How to evaluate models: observed vs predicted or predicted vs observed. Ecol Model 216:316–322. doi:10.1016/j.ecolmodel.2008.05.006

    Article  Google Scholar 

  33. Plan Vivo (2009) Dispersed inteplanting Faidherbia albida. http://planvivo.org/wp-content/uploads/MOZ-TS-DIP-var-faidherbia-June-2009-2.pdf

  34. Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169:637–649. doi:10.1007/s00442-011-2240-5

    PubMed Central  PubMed  Article  Google Scholar 

  35. Price CA, Ogle K, White EP, Weitz JS (2009) Evaluating scaling models in biology using hierarchical Bayesian approaches. Ecol Lett 12:641–651. doi:10.1111/j.1461-0248.2009.01316.x

    PubMed Central  PubMed  Article  Google Scholar 

  36. Saka AR, Bunderson WT, Itimu OA, Phombeya HSK, Mbekeani Y (1994) The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. Forest Ecol Manag 64:217–230

  37. SAS (2006) Preliminary capabilities for Bayesian analysis in SAS/STAT software. SAS Institute Inc, Cary

    Google Scholar 

  38. Sendzimir J, Reij CP, Magnuszewski P (2011) Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecol Soc 16:1. doi:10.5751/ES-04198-160301

    Google Scholar 

  39. Simini F, Anfodillo T, Carrer M, Banavar JR, Maritan A (2010) Self-similarity and scaling in forest communities. PNAS 107:7658–7662. doi:10.1073/pnas.1000137107

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Tredennick AT, Bentley LP, Hanan NP (2013) Allometric convergence in savanna trees and implications for the use of plant scaling models in variable ecosystems. PLoS ONE 8(3):e58241. doi:10.1371/journal.pone.0058241

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Umar BB, Aune JB, Lungu OI (2013) Effects of Faidherbia albida on the fertility of soil in smallholder conservation agriculture systems in eastern and southern Zambia. Afr J Agric Res 8:173–183. doi:10.5897/AJAR11.2464

    Google Scholar 

  42. Van Noordwijk M, Lusiana B (1999) WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor Sys 43:217–242

    Article  Google Scholar 

  43. West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 106:7040–7045. doi:10.1073/pnas.0812294106

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Wiegand K, Saltz D, Ward D (2006) A patch-dynamics approach to savanna dynamics and woody plant encroachment—insights from an arid savanna. Perspect Plant Ecol Evol Syst 7:229–242. doi:10.1016/j.ppees.2005.10.001

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work came from the government of Ireland through the Irish Aid and Irish Embassy in Malawi to the World Agroforestry Centre. The financial support for the third author from ICRAF’s Women’s Post-doctoral program is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gudeta W. Sileshi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sileshi, G.W., Nyoka, B.I., Beedy, T.L. et al. Modelling the scaling of stem growth with crown size and optimum stocking densities for systematic grid plantation of Faidherbia albida . New Forests 45, 699–714 (2014). https://doi.org/10.1007/s11056-014-9432-x

Download citation

Keywords

  • Agroforestry
  • Density-dependent mortality
  • Net ecosystem production