Skip to main content

Growth and fuelwood properties of five tree and shrub species in the Sahelian and Sudanian ecozones of Mali: relationships with mean annual rainfall and geographical coordinates

Abstract

In the Sahelian and Sudanian ecozones of West Africa, the rainy season lasts only 3–4 months per year, there are steep rainfall gradients with latitude and longitude, the climate is becoming increasingly hotter and drier with more variable rainfall, some fuelwood species are disappearing locally, demand for fuelwood is increasing, and we expect that fuelwood production will be increasingly limited to drier sites in the future. We need a methodology, therefore, to identify the best species for fuelwood production in drier sites. We used a methodology that could be used to identify the best fuelwood species for drier and wetter sites in regions where there are steep rainfall gradients. We investigated variation in growth and fuelwood properties of five species (Balanites aegyptiaca, Combretum glutinosum, Guiera senegalensis, Piliostigma reticulatum, Ziziphus mauritiana) along rainfall gradients. Growth parameters (tree height, stem diameter under bark, mean ring width) and fuelwood properties (basic density, volatile matter, fixed carbon, ash content, moisture content, gross calorific value, gross calorific value per cubic meter, fuel value index) were adjusted for tree age. For each species, linear regressions were used to determine the effects of mean annual rainfall and geographical coordinates, which were correlated with rainfall, on tree growth and fuelwood properties; and the effects of tree growth on fuelwood properties in lower, intermediate and higher rainfall zones. Geographical coordinates explained more variation than rainfall, and relationships with rainfall differed among species. Larger trees had wood with higher basic density, fixed carbon, ash content, moisture content, gross calorific value and/or gross calorific value per cubic meter, but lower volatile matter and/or fuel value index. Relationships between growth and fuelwood properties were not significant in all species and rainfall zones. Based on this study, we recommend producing fuelwood of C. glutinosum and G. senegalensis.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. ABNT (1984) Determinaςão do poder calorífico superior da madeira e do carvão vegetal. Norma NBR 8633. Associaςão Brasileira de Normas Técnicas, Rio de Janeiro

  2. ABNT (1986) Carvão vegetal: análise imediata. Norma NBR 8112. Associaςão Brasileira de Normas Técnicas, Rio de Janeiro

  3. ASTM (1997) Standard test methods for specific gravity of wood and wood-base materials. ASTM D2395–93. In: Annual book of ASTM standards 4.10, American Society for Testing and Materials, Philadelphia, pp 348–355

  4. Berger A, Grouzis M, Fournier C (1996) The water status of six woody species coexisting in the Sahel (Ferlo, Senegal). J Trop Ecol 12:607–627

    Article  Google Scholar 

  5. Bhat KM, Priya PB (2004) Influence of provenance variation on wood properties of teak from the western Ghat region in India. IAWA J 25:273–282

    Article  Google Scholar 

  6. Boffa J-M (1999) Agroforestry parklands in sub-Saharan Africa. FAO Conservation Guide #34, Food and Agriculture Organization of the United Nations, Rome

  7. Buontempo C (2010) Sahelian climate: past, current, projections. Met Office Hadley Centre, Devon

    Google Scholar 

  8. Chidumayo EN (2005) Effects of climate on the growth of exotic and indigenous trees in central Zambia. J Biogeogr 32:111–120

    Article  Google Scholar 

  9. Clifford SC, Arndt SK, Corlett JE, Joshi S, Sankha N, Popp M, Jones HG (1998) The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana Lamk. J Exp Bot 49:967–977

    CAS  Article  Google Scholar 

  10. FAO (2011) State of the world’s forests. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  11. Faye MD, Weber JC, Abasse TA, Boureima M, Larwanou M, Bationo AB, Diallo BO, Sigué H, Dakouo J-M, Samaké O, Sonogo Diaité D (2011) Farmers’ preferences for tree functions and species in the West African Sahel. For Trees Livelihoods 20:113–136

    Article  Google Scholar 

  12. February EC, Higgins SI, Newton R, West AG (2007) Tree distribution on a steep environmental gradient in an arid savanna. J Biogeogr 34:270–278. doi:10.1111/j.1365-2699.2006.01583.x

    Article  Google Scholar 

  13. Fromm J (2010) Wood formation in trees in relation to potassium and calcium nutrition. Tree Physiol 30:11401147. doi:10.1097/treephys/tpq024

    Article  Google Scholar 

  14. Fuwape JA, Akindele SO (1997) Biomass yield and energy value of some fast-growing multipurpose trees in Nigeria. Biomass Bioenergy 12:101–106

    CAS  Article  Google Scholar 

  15. Gebrekirstos A, Mitlöhner R, Teketay D, Worbes M (2008) Climate-growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees 22:631–641. doi:10.1007/s00468-008-221-z

    Article  Google Scholar 

  16. Goel VL, Behl HM (1995) Fuelwood production potential of six Prosopis species on an alkaline soil site. Biomass Bioenergy 8:17–20

    Article  Google Scholar 

  17. Gourlay ID (1995) The definition of seasonal growth zone in some African acacia species: a review. IAWA J 16:353–359

    Google Scholar 

  18. Hall JB, Walker DH (1991) Balanites aegyptiaca a monograph. University of Wales School of Agricultural and Forest Science, Bangor

    Google Scholar 

  19. Hiernaux P, Le Houérou HN (2006) Les parcours du Sahel. Sécheresse 17:51–71

    Google Scholar 

  20. Hijmans RJ, Cameron SE, Parra JL, Jones PJ, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  21. Kataki R, Konwer D (2001) Fuelwood characteristics of some indigenous woody species of north-east India. Biomass Bioenergy 20:17–23

    CAS  Article  Google Scholar 

  22. Kataki R, Konwer D (2002) Fuelwood characteristics of some indigenous tree species of north-east India. Biomass Bioenergy 22:433–437

    CAS  Article  Google Scholar 

  23. Kizito F, Dragila M, Sène M, Lufafa A, Diedhiou I, Dick RP, Selker JS, Dossa E, Khouma M, Badiane A, Ndiaye S (2006) Seasonal soil water variation and root patterns between two semi-arid shrubs coexisting with Pearl Millet in Senegal, West Africa. J Arid Environ 67:436–455. doi:10.1016/j.jaridenv.2006.02.021

    Article  Google Scholar 

  24. Larwanou M (2008) Climate change in the West African Sahel and savannas: impacts on woodlands and tree resources. In: Chidumayo E, Okali D, Kowereo G, Larwanou M (eds) Climate change and African forest and wildlife resources. African Forest Forum, Nairobi, pp 102–120

    Google Scholar 

  25. Le Houérou HN (1980) The role of browse in the Sahelian and Sudanian zones. http://www.ilri.org/InfoServ/Webpub/fulldocs/BROWSE_IN_AFRICA/Chapter6.htm

  26. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technol 83:37–46

    CAS  Article  Google Scholar 

  27. Nirmal Kumar JI, Patel K, Kumar RN, Kumar Bhoi R (2011) An evaluation of fuelwood properties of some Aravally mountain tree and shrub species of Western India. Biomass Bioenergy 35:411–414. doi:10.1016/j.biombioe.2010.08.051

    Article  Google Scholar 

  28. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214. doi:10.1146/annu.rev.ecolsys.37.091305.110215

    Article  Google Scholar 

  29. Ragland KW, Aerts DJ, Baker AJ (1991) Properties of wood for combusion analysis. Bioresource Technol 37:161–168

    CAS  Article  Google Scholar 

  30. Riesco Muñoz G, Remacha Gete A, Pedras Saavedra F (2006) Influencia de la situación geográfica y la fisiografía en la calidad de la madera de Quercus robur L. Recursos Rurais 1:57–65

    Google Scholar 

  31. SAS Institute Inc. (2004) SAS/STAT users’ guide, version 9.1. SAS Institute Inc., Cary

  32. Seghieri J, Simier M, Mahamane A, Hiernaux P, Rambal S (2005) Adaptive above-ground biomass, stand density and leaf water potential to droughts and clearing in Guiera senegalensis, a dominant shrub in Sahelian fallows (Niger). J Trop Ecol 21:203–213. doi:10.1017/S0266467404002135

    Article  Google Scholar 

  33. Shanavas A, Mohan Kumar B (2003) Fuelwood characteristics of tree species in homegardens of Kerala, India. Agrofor Syst 58:11–24

    Article  Google Scholar 

  34. Sotelo Montes C, Weber JC (2009) Genetic variation in wood density and correlations with tree growth in Prosopis africana from Burkina Faso and Niger. Ann For Sci 66:713. doi:10.1051/forest/2009060

    Article  Google Scholar 

  35. Sotelo Montes C, Vidaurre H, Weber JC (2003) Variation in stem-growth and branch-wood traits among provenances of Calycophyllum spruceanum Benth. from the Peruvian Amazon. New For 26:1–16

    Article  Google Scholar 

  36. Sotelo Montes C, Hernández R, Beaulieu J, Weber JC (2006) Genetic variation and correlations between growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. Silvae Genet 55:217–228

    Google Scholar 

  37. Sotelo Montes C, Silva DA, Garcia RA, Muñiz GIB, Weber JC (2011) Calorific value of Prosopis africana and Balanites aegyptiaca wood: relationships with tree growth, wood density and rainfall gradients in the West African Sahel. Biomass Bioenergy 35:346–353. doi:10.1016/j.biombioe.2010.08.058

    Article  Google Scholar 

  38. Sotelo Montes C, Weber JC, Silva DA, Andrade C, Muñiz GIB, Garcia RA, Kalinganire A (2012) Effects of region, soil, land use and terrain type on fuelwood properties of five tree/shrub species in the Sahelian and Sudanian ecozones of Mali. Ann For Sci 69:747–756. doi:10.1007/s13595-012-0195-2

    Article  Google Scholar 

  39. Sotelo Montes C, Weber JC, Garcia RA, Silva DA, Muñiz GIB (2013) Variation in wood color among natural populations of five tree and shrub species in the Sahelian and Sudanian ecozones of Mali. Can J For Res 43:552–562. doi:10.1139/cjfr-2012-0510

    Article  Google Scholar 

  40. Sternberg M, Shoshany M (2001) Aboveground biomass allocation and water content relationships in Mediterranean trees and shrubs in two climatological regions in Israel. Plant Ecol 157:173–181. doi:10.1023/A:1013916422201

    Article  Google Scholar 

  41. Tarhule A, Hughes M (2002) Tree-ring research in semi-arid West Africa: need and potential. Tree Ring Res 58:31–36

    Google Scholar 

  42. Weber JC, Sotelo Montes C (2005) Variation and correlations among stem growth and wood traits of Calycophyllum spruceanum Benth. from the Peruvian Amazon. Silvae Genet 54:31–41

    Google Scholar 

  43. Weber JC, Sotelo Montes C (2008) Geographic variation in tree growth and wood density of Guazuma crinita Mart. in the Peruvian Amazon. New For 36:29–52. doi:10.1007/s11056-007-9080-5

    Article  Google Scholar 

  44. Weber JC, Sotelo Montes C (2010) Correlations and clines in tree growth and wood density of Balanites aegyptiaca (L.) Delile provenances in Niger. New For 39:39–49. doi:10.1007/s11056-009-9153-8

    Article  Google Scholar 

  45. Weber JC, Larwanou M, Abasse TA, Kalinganire A (2008) Growth and survival of Prosopis africana provenances tested in Niger and related to rainfall gradients in the West African Sahel. For Ecol Manage 256:585–592. doi:10.1016/j.foreco.2008.05.004

    Article  Google Scholar 

  46. Wezel A, Rajot J-L, Herbrig C (2000) Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. J Arid Environ 44:383–398. doi:10.1006.jare1999.0609

    Article  Google Scholar 

  47. Wiemann MC, Williamson GB (2002) Geographic variation in wood specific gravity: effects of latitude, temperature and precipitation. Wood Fiber Sci 34:96–107

    CAS  Google Scholar 

  48. Zhang S-B, Ferry Slik JW, Zhang J-L, Cao K-F (2011) Spatial patterns of wood traits in China are controlled by phylogeny and environment. Global Ecol Biogeogr 20:241–250. doi:10.1111/j.1466-8238.2010.00528.x

    Article  Google Scholar 

  49. Zobel BJ, van Buijtenen JP (1989) Wood variation: its causes and control. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by a post-doctoral research grant from the World Agroforestry Centre (ICRAF) to the first author, and funds from the International Fund for Agricultural Development (IFAD) and the Universidade Federal do Paraná (UFPR). Special thanks to the team in the Biomass and Energy Laboratory at UFPR (Fernanda Marchiori, Rodrigo Medeiros Ribeiro, Sandra Lucia Soares Mayera), the International Crops Research Institute for the Semi Arid Tropics (ICRISAT) for providing laboratory facilities in Mali, Jane Poole for statistical advice, and the anonymous reviewers for their useful comments on an earlier version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carmen Sotelo Montes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sotelo Montes, C., Weber, J.C., Silva, D.A. et al. Growth and fuelwood properties of five tree and shrub species in the Sahelian and Sudanian ecozones of Mali: relationships with mean annual rainfall and geographical coordinates. New Forests 45, 179–197 (2014). https://doi.org/10.1007/s11056-013-9401-9

Download citation

Keywords

  • Tree height
  • Stem diameter
  • Mean ring growth
  • Basic density
  • Volatile matter
  • Fixed carbon
  • Ash content
  • Moisture content
  • Gross calorific value