Advertisement

New Forests

, Volume 45, Issue 1, pp 119–129 | Cite as

Variability in seedling emergence traits of Patagonian Cypress marginal steppe populations

  • Mario J. PastorinoEmail author
  • Mercedes S. Sá
  • Alejandro G. Aparicio
  • Leonardo A. Gallo
Article
  • 211 Downloads

Abstract

Genetic information on adaptive traits is crucial for prediction of the evolution of natural populations in relation to global climate change. The seedling emergence process together with germination is a key adaptive stage in any seeding species. We aim to analyze variability in seedling emergence traits within and among marginal populations of Patagonian Cypress (Austrocedrus chilensis (D.Don) Pic. Ser. et Bizzarri), which have been suggested to be of conservation relevance. We performed an emergence trial in a greenhouse with seeds collected from 177 open-pollinated trees from 10 populations. A sigmoidal curve was fitted to the cumulative emergence data (in percentage of the sown seeds) for each replicate of each family. Variability was estimated using ANOVA for six variables: emergence capacity (EC), emergence energy (EE), energy period (EP), emergence initiation (t 10), emergence cessation (t 90) and emergence duration (Dur). The overall trial mean for EC was 76.2 %, while EE was only 27.6 %. Hence, most seedlings emerged after the energy period, which is interpreted as a bet-hedging strategy. Both “population” and “family” factors significantly affected all variables. The proportions of “family” variances were higher than “population” ones for EC, EE, Dur and t 90, but the opposite was found for EP and t 10, which is evidence of differentiation among populations. Variability among families may be due to both genetic and environmental causes, including maternal effects. However, the relatively high proportion of family variability in EC and EE suggests acceptable levels of additive genetic variance, which would not hinder the potential to evolve in these specific traits. Conversely, the chances to adapt in EP and t 10 are lower, and consequently local extinctions driven by global climate change seem possible.

Keywords

Adaptation Austrocedrus chilensis Genetic drift Germination Local extinction 

Notes

Acknowledgments

We gratefully thank Ricardo Alía for the helpful scientific discussions he led during MJP’s stay at Centro de Investigación Forestal—INIA (Madrid) in 2010 supported by a CONICET scholarship. We also acknowledge Romina Dimarco for her help in seed collection, and Inés Sá and Fabián Jaras for their assistance in germination recording. Seed collection and the germination trial were funded by PIA 02/01, Proyecto Forestal de Desarrollo, SAGPyA “Selección para productividad y resistencia a la sequía en poblaciones marginales de Ciprés de la Cordillera”. The study was partly supported by PICTO 36886, Agencia Nacional de Promoción Científica y Tecnológica “Definición de Regiones de Procedencia y Áreas Productoras de Semilla de Ciprés de la Cordillera, Raulí y Roble Pellín en Argentina”.

References

  1. Aldhous JR (1972) Nursery practice. For Comm Bull 43, LondonGoogle Scholar
  2. Alía R, Gómez A, Agúndez MD, Bueno MA, Notivol E (2001) Levels of genetic differentiation in Pinus halepensis Mill. in Spain using quantitative traits, isozymes, RAPDs and cp-microsatellites. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Kluwer, Dordrecht, pp 151–159CrossRefGoogle Scholar
  3. Aparicio AG, Pastorino MJ, Gallo LA (2010) Genetic variation of early height growth traits at the xeric limits of Austrocedrus chilensis (Cupressaceae). Austral Ecol 35:825–836CrossRefGoogle Scholar
  4. Aparicio AG, Zuki SM, Pastorino MJ, Martinez-Meier A, Gallo LA (2012) Heritable variation in the survival of seedlings from Patagonian cypress marginal xeric populations coping with drought and extreme cold. Tree Genet Genomes 8:801–810CrossRefGoogle Scholar
  5. Arana MV, Gallo LA, Vendramin GG, Pastorino MJ, Sebastiani F, Marchelli P (2010) High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Mol Phylogenet Evol 54:941–949PubMedCrossRefGoogle Scholar
  6. Bran D, Pérez A, Barrios D, Pastorino MJ, Ayesa J (2002) Eco-región Valdiviana: distribución actual de los bosques de “Ciprés de la Cordillera” (Austrocedrus chilensis)—Escala 1:250.000. INTA—Adm. Pques. Nac.—Fund. Vida Silvestre Argentina. BarilocheGoogle Scholar
  7. Contardi L (1995) Morfología, estructura y calidad de semillas de Austrocedrus chilensis (D. Don) Flor. et Boutl. Publicación Técnica 23 CIEFAPGoogle Scholar
  8. Czabator FJ (1962) Germination value: an index combining speed and completeness of pine seed germination. Forest Sci 8:386–396Google Scholar
  9. El-Kassaby YA, Edwards DGW, Taylor DW (1992) Control of germination parameters in Douglas-fir and its importance for domestication. Silvae Genet 41:48–54Google Scholar
  10. Ffolliot PF, Thames JL (1983) Collection, handling, storage and pre-treatment of Prosopis seeds in Latin America. FAO, RomeGoogle Scholar
  11. Finkeldey R, Hattemer HH (2007) Tropical forest genetics. Springer, BerlinCrossRefGoogle Scholar
  12. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467PubMedCrossRefGoogle Scholar
  13. Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204PubMedGoogle Scholar
  14. Hufford KM, Hamrick JL (2003) Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution 57:518–526PubMedGoogle Scholar
  15. Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383CrossRefGoogle Scholar
  16. Pastorino MJ, Gallo LA (2000) Variación geográfica en peso de semilla en poblaciones naturales argentinas de “Ciprés de la Cordillera”. Bosque 21:95–109Google Scholar
  17. Pastorino MJ, Gallo LA (2002) Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian forest. J Biogeogr 29:1167–1178CrossRefGoogle Scholar
  18. Pastorino MJ, Gallo LA (2009) Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. Forest Ecol Manag 257:2350–2358CrossRefGoogle Scholar
  19. Pastorino MJ, Gallo LA, Hattemer HH (2004) Genetic variation in natural populations of Austrocedrus chilensis, a cypress of the Andean-Patagonian Forest. Biochem Syst Ecol 32:993–1008CrossRefGoogle Scholar
  20. Pastorino MJ, Ghirardi S, Grosfeld J, Gallo LA, Puntieri JG (2010) Genetic variation in architectural seedling traits of Patagonian Cypress natural populations from the extremes of a precipitation range. Ann Forest Sci 67:508p1–508p10Google Scholar
  21. Pastorino MJ, Aparicio GA, Marchelli P, Gallo LA (2012) Genetic variation in seedling-water-use-efficiency of Patagonian Cypress populations from contrasting precipitation regimes assessed through carbon isotope discrimination. Forest Syst 21:189–198CrossRefGoogle Scholar
  22. Roach D, Wulff R (1987) Maternal effects in plants. Ann Rev Ecol Syst 18:209–235CrossRefGoogle Scholar
  23. Schimpf DJ, Flint SD, Palmblad IG (1977) Representation of germination curves with the logistic function. Ann Bot 41:1357–1360Google Scholar
  24. Stern K, Roche L (1974) Genetics of forest ecosystems. Springer, BerlinCrossRefGoogle Scholar
  25. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  26. Torres M, Frutos G (1989) Analysis of germination curves of aged fennel seeds by mathematical models. Environ Exp Bot 29:409–415CrossRefGoogle Scholar
  27. Willan RL (1985) A guide to forest seed handling. Forestry Paper 20/2, FAO, Humlebaek (Denmark)Google Scholar
  28. Wright JW (1976) Introduction to forest genetics. Academic Press, New YorkGoogle Scholar
  29. Zar J (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mario J. Pastorino
    • 1
    • 2
    Email author
  • Mercedes S. Sá
    • 1
  • Alejandro G. Aparicio
    • 1
  • Leonardo A. Gallo
    • 1
  1. 1.Unidad de Genética Ecológica y Mejoramiento ForestalInstituto Nacional de Tecnología Agropecuaria (INTA), EEA BarilocheSan Carlos de BarilocheArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations