Skip to main content
Log in

Leaf physiology and sugar concentrations of transplanted Quercus rubra seedlings in relation to nutrient and water availability

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Newly planted seedlings incur transplant stress resulting from poor root-soil contact, which limits access to soil moisture and nutrients and reduces growth for one or more growing seasons. Controlled release fertilizer (CRF) applied at planting may reduce transplant stress by augmenting rhizosphere nutrient availability yet with potential risk of root system damage due to elevated fertilizer salt concentrations, which may be further exacerbated by drought. Under controlled conditions, we examined northern red oak (Quercus rubra L.) leaf physiological parameters and soluble sugar concentrations in response to varying nutrient levels (via CRF application) and moisture availability gradients ranging from drought to flooding. Net photosynthetic rates, transpiration rates, and chlorophyll fluorescence parameters responded positively to CRF application, and no interactions were observed between CRF and moisture availability; however, CRF did not increase soluble sugar concentrations. No effects of short-term drought were observed, but flooding exerted a rapid negative influence on net photosynthetic rates, transpiration rates, and chlorophyll fluorescence parameters; flooding also elevated soluble sugar concentrations, indicative of disrupted carbon partitioning and a much greater sensitivity to root-zone hypoxia than to drought in this species. Lack of interactions between CRF application and soil moisture availability indicates relatively similar responses of fertilized seedlings across moisture gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson PD, Tomlinson PT (1998) Ontogeny affects response of northern red oak seedlings to elevated CO2 and water stress. I. Carbon assimilation and biomass production. New Phytol 140:477–491

    Article  Google Scholar 

  • Angelov MN, Sung SS, Doong RL, Harms WR, Kormanik PP, Black CC Jr (1996) Long- and short-term flooding effects on survival and sink-source relationships of swamp-adapted tree species. Tree Physiol 16:477–484

    Article  PubMed  Google Scholar 

  • Dey DC, Gardiner ES, Kabrick JM, Stanturf JA, Jacobs DF (2010) Innovations in afforestation of agricultural bottomlands to restore native forests in the eastern United States. Scan J For Res 25:31–42

    Article  Google Scholar 

  • Dickson RE, Tomlinson PT, Isebrands JG (2000) Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episodic growth. Can J For Res 30:1308–1317

    Article  CAS  Google Scholar 

  • Gravatt DA, Kirby CJ (1998) Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol 18:411–417

    Article  PubMed  Google Scholar 

  • Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New Forest 30:273–294

    Article  Google Scholar 

  • Hanson PJ, Dickson RE, Isebrands JG, Crow TR, Dixon RK (1986) A morphological index of Quercus seedling ontogeny for use in studies of physiology and growth. Tree Physiol 2:273–281

    PubMed  Google Scholar 

  • Jacobs DF (2003) Nursery production of hardwood seedlings. FNR-212. Purdue University Cooperative Extension Service, West Lafayette

    Google Scholar 

  • Jacobs DF, Timmer VR (2005) Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New Forest 30:147–166

    Article  Google Scholar 

  • Jacobs DF, Rose R, Haase DL, Alzugaray PO (2004a) Fertilization at planting inhibits root system development and drought avoidance of Douglas-fir (Pseudotsuga menziesii) seedlings. Ann For Sci 61:643–651

    Article  Google Scholar 

  • Jacobs DF, Ross-Davis AL, Davis AS (2004b) Establishment success of conservation tree plantations in relation to silvicultural practices in Indiana, USA. New Forest 28:23–36

    Article  Google Scholar 

  • Jacobs DF, Salifu KF, Seifert JR (2005) Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting. Forest Ecol Manag 214:28–39

    Article  Google Scholar 

  • Jacobs DF, Salifu KF, Davis AS (2009) Drought susceptibility and recovery of transplanted Quercus rubra seedlings in relation to root system morphology. Ann For Sci 66:504

    Article  Google Scholar 

  • Kleiner KW, Abrams MD, Schultz JC (1992) The impact of water and nutrient deficiencies on the growth, gas exchange and water relations of red oak and chestnut oak. Tree Physiol 11:271–287

    PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Morrissey RC, Jacobs DF, Davis AS, Rathfon RA (2010) Survival and competitiveness of Quercus rubra regeneration associated with planting stocktype and harvest opening intensity. New Forest 40:273–287

    Article  Google Scholar 

  • Pezeshki SR, Pardue JH, DeLaune RD (1996) Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. Tree Physiol 16:453–458

    Article  PubMed  Google Scholar 

  • Rengifo E, Tezara W, Herrera A (2005) Water relations, chlorophyll a fluorescence, and contents of saccharides in tree species of a tropical forest in response to flood. Photosynthetica 43:203–210

    Article  CAS  Google Scholar 

  • Ross-Davis AL, Broussard SR, Jacobs DF, Davis AS (2005) Afforestation behavior of private landowners: an examination of hardwood tree plantings in Indiana. N J Appl For 22:149–153

    Google Scholar 

  • Sloan JL, Jacobs DF (2008) Carbon translocation patterns associated with new root proliferation during episodic growth of transplanted Quercus rubra seedlings. Tree Physiol 28:1121–1126

    Article  PubMed  CAS  Google Scholar 

  • South DB, Zwolinski JB (1996) Transplant stress index: a proposed method of quantifying planting check. New Forest 13:311–324

    Google Scholar 

  • Tomlinson PT, Anderson PD (1998) Ontogeny affects response of northern red oak seedlings to elevated CO2 and water stress. II. Recent photosynthate distribution and growth. New Phytol 140:493–504

    Article  Google Scholar 

Download references

Acknowledgments

We thank Suzanne Cunningham and Jeff Volenec for instruction in the analysis of plant carbohydrates, advice, technical assistance, and for generously allowing the use of their lab for parts of this experiment; Jim McKenna for the generous contribution of seedlings for use in this experiment; Charles Michler for assistance in acquisition of critical analytical equipment; and Derek Heacock and Miranda Vogel for their contributions of time and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Sloan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, J.L., Jacobs, D.F. Leaf physiology and sugar concentrations of transplanted Quercus rubra seedlings in relation to nutrient and water availability. New Forests 43, 779–790 (2012). https://doi.org/10.1007/s11056-012-9326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-012-9326-8

Keywords

Navigation