New Forests

, Volume 43, Issue 5–6, pp 581–599 | Cite as

Determining suitable locations for seed transfer under climate change: a global quantitative method



Changing climate conditions will complicate efforts to match seed sources with the environments to which they are best adapted. Tree species distributions may have to shift to match new environmental conditions, potentially requiring the establishment of some species entirely outside of their current distributions to thrive. Even within the portions of tree species ranges that remain generally suitable for the species, local populations may not be well-adapted to altered local conditions. To assist efforts to restore forests and to maximize forest productivity in the face of climate change, we developed a set of 30,000 quantitatively defined seed transfer “ecoregions” across the globe. Reflecting current and future conditions, these were created by combining global maps of potentially important environmental characteristics using a large-scale statistical clustering technique. This approach assigns every 4 km2 terrestrial raster cell into an ecoregion using non-hierarchical clustering of the cells in multivariate space based on 16 environmental variables. Two cells anywhere on the map with similar combinations of environmental characteristics are located near each other in this data space; cells are then classified into relatively homogeneous ecoregion clusters. Using two global circulation models and two emissions scenarios, we next mapped the predicted environmentally equivalent future locations of each ecoregion in 2050 and 2100. We further depicted areas of decreasing environmental similarity to given ecoregions, both in current time and under climate change. This approach could help minimize the risk that trees used for production, restoration, reforestation, and afforestation are maladapted to their planting sites.


Restoration Conservation genetics Quantitative ecoregions Multivariate clustering Seed sources Human-assisted migration 


  1. Apsit VJ, Dyer RJ, Sork VL (2002) Patterns of mating in an insect-pollinated tree species in the Missouri Ozark Forest Ecosystem Project (MOFEP). In: Shifley SR, Kabrick JM (eds) Second Missouri Ozark Forest Ecosystem Project Ecosystem symposium: post-treatment results of the landscape experiment, general technical report NC-227. USDA Forest Service, North Central Experiment Station, St. Paul, pp 212–226Google Scholar
  2. Baker B, Diaz H, Hargrove W, Hoffman F (2010) Use of the Koppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Clim Change 98(1–2):113–131. doi:10.1007/s10584-009-9622-2 CrossRefGoogle Scholar
  3. Bower AD, Aitken SN (2008) Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). Am J Bot 95:66–76PubMedCrossRefGoogle Scholar
  4. Boyer WD (1990) Longleaf pine. In: Burns RM, Honkala BH (eds) Silvics of North America: 1. Conifers, vol 1. Agricultural handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  5. Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1(4):587–597. doi:10.1111/j.1752-4571.2008.00045.x Google Scholar
  6. Carr DE, Banas LE (2000) Dogwood anthracnose (Discula destructiva): effects of and consequences for host (Cornus florida) demography. Am Midl Nat 143(1):169–177. doi:10.1674/0003-0031(2000) CrossRefGoogle Scholar
  7. Crowe KA, Parker WH (2005) Provisional breeding zone determination modeled as a maximal covering location problem. Can J For Res (Revue Canadienne De Recherche Forestiere) 35(5):1173–1182. doi:10.1139/x05-041 CrossRefGoogle Scholar
  8. Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18(8):2255–2261. doi:10.1007/s10531-009-9584-8 CrossRefGoogle Scholar
  9. Gilliam FS, Platt WJ (2006) Conservation and restoration of the Pinus palustris ecosystem. Appl Veg Sci 9(1):7–10. doi:10.1658/1402-2001(2006) CrossRefGoogle Scholar
  10. Global Soil Data Task Group (2000) Global gridded surfaces of selected soil characteristics (International Geosphere-Biosphere Programme—Data and Information System [IGBP-DIS]). Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. doi:10.3334/ORNLDAAC/569
  11. Griffith GE, Omernik JM, McGinley M (2008) Ecoregions of the United States-Level IV (EPA). Environmental Information Coalition, National Council for Science and the Environment. Accessed 24 Aug 2011
  12. Hamann A, Koshy MP, Namkoong G, Ying CC (2000) Genotype x environment interactions in Alnus rubra: developing seed zones and seed-transfer guidelines with spatial statistics and GIS. For Ecol Manag 136(1–3):107–119. doi:10.1016/s0378-1127(99)00284-4 CrossRefGoogle Scholar
  13. Hamann A, Gylander T, Chen PY (2011) Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genet Genomes 7(2):399–408. doi:10.1007/s11295-010-0341-7 CrossRefGoogle Scholar
  14. Hargrove WW, Hoffman FM (2003) An analytical assessment tool for predicting changes in a species distribution map following changes in environmental conditions. In: Parks BO, Clark KM, Crane MP (eds) Proceedings of the 4th international conference on integrating GIS and environmental modeling (GIS/EM4): problems, prospects and research needs, September 2–8, 2000, Banff, Alberta, Canada. Cooperative Institute for Research in Environmental Sciences; NOAA National Geophysical Data Center, Ecosystem Informatics; and US Geological Survey, Center for Biological InformaticsGoogle Scholar
  15. Hargrove WW, Hoffman FM (2005) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manage 34 (Suppl. 1):S39–S60Google Scholar
  16. Hargrove WW, Hoffman FM, Hessburg PF (2006) Mapcurves: a quantitative method for comparing categorical maps. J Geogr Syst 8(2):187–208. doi:10.1007/s10109-006-0025-x CrossRefGoogle Scholar
  17. Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14(2):170–176. doi:10.1111/j.1526-100X.2006.00136.x CrossRefGoogle Scholar
  18. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi:10.1002/joc.1276 CrossRefGoogle Scholar
  19. Hoffman FM, Hargrove WW, Erickson DJ, Oglesby RJ (2005) Using clustered climate regimes to analyze and compare predictions from fully coupled general circulation models. Earth Interact 9(10):1–27CrossRefGoogle Scholar
  20. Holzmueller E, Jose S, Jenkins M, Camp A, Long A (2006) Dogwood anthracnose in eastern hardwood forests: what is known and what can be done? J For 104(1):21–26Google Scholar
  21. Horning ME, McGovern TR, Darris DC, Mandel NL, Johnson R (2010) Genecology of Holodiscus discolor (Rosaceae) in the Pacific Northwest, USA. Restor Ecol 18(2):235–243. doi:10.1111/j.1526-100X.2008.00441.x CrossRefGoogle Scholar
  22. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18(3):147–155. doi:10.1016/s0169-5347(03)00002-8 CrossRefGoogle Scholar
  23. Jetton RM, Whittier WA, Dvorak WS, Rhea JR (2010) Status of gene conservation efforts for eastern and Carolina hemlock in the eastern United States. In: Onken B, Reardon R (eds) Fifth Symposium on Hemlock Woolly Adelgid in the Eastern United States, Asheville, North Carolina, 2010. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, pp 93–99Google Scholar
  24. Johnson GR, Sorensen FC, St Clair JB, Cronn RC (2004) Pacific Northwest forest tree seed zones: a template for native plants? Nativ Plants J 5(2):131–140CrossRefGoogle Scholar
  25. Johnson GR, Stritch L, Olwell P, Lambert S, Horning ME, Cronn RC (2010a) What are the best seed sources for ecosystem restoration on BLM and USFS lands? Nativ Plants J 11(2):117–131CrossRefGoogle Scholar
  26. Johnson RC, Erickson VJ, Mandel NL, St Clair JB, Vance-Borland KW (2010b) Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon. USA Bot 88(8):725–736. doi:10.1139/b10-047 Google Scholar
  27. Jones TA (2005) Genetic principles and the use of native seeds: just the FAQs, please, just the FAQs. Nativ Plants J 6(1):14–24Google Scholar
  28. Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends Plant Sci 14(11):599–607. doi:10.1016/j.tplants.2009.08.005 PubMedCrossRefGoogle Scholar
  29. Lesica P, Allendorf FW (1999) Ecological genetics and the restoration of plant communities: mix or match? Restor Ecol 7(1):42–50. doi:10.1046/j.1526-100X.1999.07105.x CrossRefGoogle Scholar
  30. Little EL (1971) Atlas of United States trees, vol 1. Conifers and Important Hardwoods, Washington, DCGoogle Scholar
  31. Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH (1999) The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J Biogeogr 26(5):1025–1038. doi:10.1046/j.1365-2699.1999.00329.x CrossRefGoogle Scholar
  32. Malaval S, Lauga B, Regnault-Roger C, Largier G (2010) Combined definition of seed transfer guidelines for ecological restoration in the French Pyrenees. Appl Veg Sci 13(1):113–124. doi:10.1111/j.1654-109X.2009.01055.x CrossRefGoogle Scholar
  33. Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19(17):3824–3835. doi:10.1111/j.1365-294X.2010.04716.x PubMedCrossRefGoogle Scholar
  34. Mangold RD, Libby WJ (1978) Model for reforestation with optimal and suboptimal tree populations. Silvae Genet 27(2):66–68Google Scholar
  35. McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13(3):432–440. doi:10.1111/j.1526-100X.2005.00058.x CrossRefGoogle Scholar
  36. McLemore BC (1990) Flowering dogwood. In: Burns RM, Honkala BH (eds) Silvics of North America: 2. Hardwoods, vol 2. Agricultural Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  37. Miller SA, Bartow A, Gisler M, Ward K, Young AS, Kaye TN (2010) Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restor Ecol 19:268–276. doi:10.1111/j.1526-100X.2010.00702.x CrossRefGoogle Scholar
  38. Montalvo AM, Ellstrand NC (2000) Transplantation of the subshrub Lotus scoparius: testing the home-site advantage hypothesis. Conserv Biol 14(4):1034–1045. doi:10.1046/j.1523-1739.2000.99250.x CrossRefGoogle Scholar
  39. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30. doi:10.1002/hyp.3360050103 CrossRefGoogle Scholar
  40. Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5(2):362–385. doi:10.2307/1942028 CrossRefGoogle Scholar
  41. O’Brien EK, Mazanec RA, Krauss SL (2007) Provenance variation of ecologically important traits of forest trees: implications for restoration. J Appl Ecol 44(3):583–593. doi:10.1111/j.1365-2664.2007.01313.x CrossRefGoogle Scholar
  42. O’Neill GA, Aitken SN (2004) Area-based breeding zones to minimize maladaptation. Can J For Res (Revue Canadienne De Recherche Forestiere) 34(3):695–704. doi:10.1139/x03-227 CrossRefGoogle Scholar
  43. Parker WH (1992) Focal point seed zones: site-specific seed zone delineation using geographic information systems. Can J For Res (Revue Canadienne De Recherche Forestiere) 22(2):267–271. doi:10.1139/x92-035 CrossRefGoogle Scholar
  44. Parker WH (2000) Rates of change of adaptive variation in Picea mariana visualized by GIS using a differential systematic coefficient. New For 20(3):259–276. doi:10.1023/a:1006736019650 CrossRefGoogle Scholar
  45. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42PubMedCrossRefGoogle Scholar
  46. Persson B (1998) Will climate change affect the optimal choice of Pinus silvestris provenances? Silva Fennica 32(2):121–128Google Scholar
  47. Pojar J, Klinka K, Meidinger DV (1987) Biogeoclimatic ecosystem classification in British Columbia. Forest Ecol Manag 22(1–2):119–154. doi:10.1016/0378-1127(87)90100-9 CrossRefGoogle Scholar
  48. Potter KM, Hargrove WW, Koch FH (2010) Predicting climate change extirpation risk for central and southern Appalachian forest tree species. In: Proceedings from the conference on ecology and management of high-elevation forests of the Central and Southern Appalachian Mountains, Snowshoe, West Virginia, May 14–15, 2009. USDA Forest Service, Northern Research Station, Newtown SquareGoogle Scholar
  49. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19(2):117–134. doi:10.2307/2845499 CrossRefGoogle Scholar
  50. Rehfeldt GE, Jaquish BC (2010) Ecological impacts and management strategies for western larch in the face of climate-change. Mitig Adapt Strateg Glob Change 15(3):283–306. doi:10.1007/s11027-010-9217-2 CrossRefGoogle Scholar
  51. Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA (1999) Genetic responses to climate in Pinus contorta: Niche breadth, climate change, and reforestation. Ecol Monogr 69(3):375–407Google Scholar
  52. Rehfeldt GE, Wykoff WR, Ying CC (2001) Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim Change 50(3):355–376CrossRefGoogle Scholar
  53. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60. doi:10.1038/nature01333 PubMedCrossRefGoogle Scholar
  54. Sackville Hamilton NR (2001) Is local provenance important in habitat creation? A reply. J Appl Ecol 38(6):1374–1376CrossRefGoogle Scholar
  55. Saxon E, Baker B, Hargrove W, Hoffman F, Zganjar C (2005) Mapping environments at risk under different global climate change scenarios. Ecol Lett 8(1):53–60. doi:10.1111/j.1461-0248.2004.00694.x CrossRefGoogle Scholar
  56. Schmidtling RC (1994) Use of provenance tests to predict response to climatic change: loblolly pine and Norway spruce. Tree Physiol 14(7–9):805–817PubMedGoogle Scholar
  57. Schmidtling RC (2001) Southern pine seed sources. United State Department of Agriculture, Forest Service, Southern Research Station, AshevilleGoogle Scholar
  58. Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116:S233–S242PubMedCrossRefGoogle Scholar
  59. Smith BM, Diaz A, Daniels R, Winder L, Holland JM (2009) Regional and ecotype traits in Lotus corniculatus L., with reference to restoration ecology. Restor Ecol 17(1):12–23. doi:10.1111/j.1526-100X.2007.00327.x
  60. Thomson AM, Crowe KA, Parker WH (2010) Optimal white spruce breeding zones for Ontario under current and future climates. Can J For Res (Revue Canadienne De Recherche Forestiere) 40(8):1576–1587. doi:10.1139/x10-112 CrossRefGoogle Scholar
  61. United States Department of Agriculture Forest Service (2008) Forest inventory and analysis national core field guide, version 4.0. USDA Forest Service, Forest Inventory and Analysis National Office. Accessed 20 Feb 2008
  62. Van Lear DH, Carroll WD, Kapeluck PR, Johnson R (2005) History and restoration of the longleaf pine-grassland ecosystem: implications for species at risk. For Ecol Manag 211(1–2):150–165. doi:10.1016/j.foreco.2005.02.014 CrossRefGoogle Scholar
  63. Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11(4):300–311. doi:10.1016/j.baae.2009.09.002 CrossRefGoogle Scholar
  64. Vitt P, Havens K, Kramer AT, Sollenberger D, Yates E (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143(1):18–27. doi:10.1016/j.biocon.2009.08.015 CrossRefGoogle Scholar
  65. Vogel KP, Schmer MR, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Rangel Ecol Manag 58(3):315–319. doi:10.2111/1551-5028(2005) CrossRefGoogle Scholar
  66. Wilkinson DM (2001) Is local provenance important in habitat creation? J Appl Ecol 38(6):1371–1373. doi:10.1046/j.0021-8901.2001.00669.x CrossRefGoogle Scholar
  67. Williams CE, Moriarity WJ (1999) Occurrence of flowering dogwood (Cornus florida L.), and mortality by dogwood anthracnose (Discula destructiva Redlin), on the northern Allegheny Plateau. J Torrey Bot Soc 126(4):313–319. doi:10.2307/2997315 Google Scholar
  68. Wilson BL, Darris DC, Johnson R, Horning ME, Kuykendall K (2008) Seed transfer zones for a native grass (Festuca roemeri): genecological evidence. Nativ Plants J 9(3):287–302CrossRefGoogle Scholar
  69. Woodall CW, Oswalt CM, Westfall JA, Perry CH, Nelson MD, Finley AO (2009) An indicator of tree migration in forests of the eastern United States. For Ecol Manag 257(5):1434–1444. doi:10.1016/j.foreco.2008.12.013 CrossRefGoogle Scholar
  70. Wu HX, Ying CC (2004) Geographic pattern of local optimality in natural populations of lodgepole pine. For Ecol Manag 194(1–3):177–198. doi:10.1016/j.foreco.2004.02.017 CrossRefGoogle Scholar
  71. Wu HX, Ying CC, Ju HB (2005) Predicting site productivity and pest hazard in lodgepole pine using biogeoclimatic system and geographic variables in British Columbia. Ann For Sci 62(1):31–42. doi:10.1051/forest:2004089 CrossRefGoogle Scholar
  72. Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. For Ecol Manag 227(1–2):1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Forestry and Environmental ResourcesNorth Carolina State UniversityResearch Triangle ParkUSA
  2. 2.Eastern Forest Environmental Risk Assessment Center (EFETAC), Southern Research Station, USDA Forest ServiceAshevilleUSA

Personalised recommendations