Economically profitable post fire restoration with black truffle (Tuber melanosporum) producing plantations

Abstract

Cultivating black truffle (Tuber melanosporum Vittad.) is highly profitable in sites suitable for its development. Land use history is an important factor when choosing suitable habitat, and lands with non-ectomycorrhizal host species are recommended when introducing T. melanosporum-inoculated seedlings in order to reduce competition from native, soil-borne ectomycorrhizal (ECM) inoculum. Nearly every year Mediterranean wildfires cause the loss of forested lands where soil and climatic characteristics are suitable for truffle cultivation. Introducing T. melanosporum-inoculated seedlings in these sites could promote reforestation with a native ECM fungus and, in addition, may provide economic incentives. We tested the viability of burnt forest lands for truffle cultivation by introducing T. melanosporum-inoculated Quercus ilex seedlings in burnt forest sites with and without resprouting forest species which act as repositories for native ECM fungi. We also evaluated the role of the ECM host plants, which resprout after a forest fire, in the maintenance and dynamic processes of the ECM fungal community. The study followed a factorial design with two levels: (1) T. melanosporum-inoculated and non-inoculated Q. ilex seedlings and (2) presence and absence of ECM host plants resprouting after the fire. We established 10 experimental plots with 360 holm oaks. After four and a half years, the truffle-inoculated holm oaks maintained 36 % of their root tips colonized with T. melanosporum, and 10 years after plantations, 26.2 % of the surviving inoculated holm oaks displayed a “truffle burn” area. A greater ECM morphotype richness was associated with seedlings planted in plots with the presence of ECM host plants, whereas the T. melanosporum mycorrhizal ratio was constant. These results suggest that reforestation with T. melanosporum-inoculated seedlings can be successful following forest fires and highlights the competitiveness of this fungus within the ECM community in these soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agerer R (1987–2004) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwäbisch Gmünd, Munich

  2. Agerer R, Danielson R, Egli S, Ingleby K, Luoma D, Treu R (1996–2002) Descriptions of ectomycorrhizae 1–5. Einhorn-Verlag, Schwäbisch Gmünd, Munich

  3. Amaranthus MP, Trappe JM, Perry DA (1993) Soil moisture, native revegetation, and Pinus lambertiana seedling survival, growth and mycorrhiza formation following wildfire and grass seeding. Restor Ecol 1:188–195

    Article  Google Scholar 

  4. Anderson IC, Bastias BA, Genney DR, Parkin PI, Cairney JWG (2007) Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol Res 111:482–486

    PubMed  Article  CAS  Google Scholar 

  5. Bardgett R (2005) The biology of soil. A community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  6. Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Rome, pp 163

    Google Scholar 

  7. Bonet JA, Fischer CR, Colinas C (2006) Cultivation of black truffle to promote reforestation and land-use stability. Agronomy 26:69–76

    Google Scholar 

  8. Bonet JA, Oliach D, Fischer CR, Olivera C, Martínez de Aragón J, Colinas C (2009) Cultivation methods of the black truffle, the most profitable mediterranean non-wood forest product; a state of the art review. EFI proceedings, 57: modelling, valuing and managing mediterranean forest ecosystems for non-timber goods and services, pp 57–71

  9. Borchers SL, Perry DA (1990) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clearcuts. Can J For Res 20:712–721

    Article  Google Scholar 

  10. Borges De Souza LA, Silva Filho G, Lopes De Oliveira V (2004) Eficiência de fungos ectomicorrízicos na absorção de fósforo e na promoção do crescimento de eucalipto. Pesq Agropec Bras 39:349–355

    Article  Google Scholar 

  11. Byrot Y (ed) (2009) Living with wildfires: what science can tell us. European Forest Institute. Discussion Paper 15, pp 82

  12. Castro J, Zamora R, Hódar JA, Gómez JM (2002) Use of shrubs as nurse plants: a new technique for reforestation in mediterranean mountains. Restor Ecol 10:297–305. doi:10.1046/j.1526-100X.2002.01022.x

    Article  Google Scholar 

  13. Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V (2011) Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytol 189:751–764

    PubMed  Article  CAS  Google Scholar 

  14. Chen DM, Cairney JWG (2002) Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res 106:532–540

    Article  CAS  Google Scholar 

  15. Colinas C, Perry D, Molina R, Amaranthus M (1994) Survival and growth of Pseudotsuga menziesii seedlings inoculated with biocide-treated soils at planting in a degraded clearcut. Can J For Res 24:1741–1749

    Article  Google Scholar 

  16. Coll L, Balandier P, Pocon-Cochard C, Prevosto B, Curt T (2003) Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann For Sci 60:593–600

    Article  Google Scholar 

  17. CREAF (1992) Inventari Ecològic i Forestal de Catalunya. Departament d’Agricultura, Ramaderia i Pesca

    Google Scholar 

  18. Dahlberg A, Schimmel J, Taylor A, Johannesson H (2001) Post-fire legacy of ectomycorrhizal fungal communities in the Swedish Boreal forest in relation to fire severity and logging intensity. Biol Conserv 100:151–161

    Article  Google Scholar 

  19. De Miguel A, Sáez R (2005) Algunas micorrizas competidoras de plantaciones truferas. Publicaciones de Biología, Universidad de Navarra, Serie Botánica 16:1–18

    Google Scholar 

  20. De Román M, De Miguel A (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482

    PubMed  Article  Google Scholar 

  21. Domínguez JA, Serrano JS, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. Forest Ecol Manag 231:226–233

    Article  Google Scholar 

  22. Fasolo-Bonfante P, Fontana A (1971) Studi sull’ecologia del Tuber melanosporum i dimostrazioni di un effecto fitotossico. Allionia 17:47–54

    Google Scholar 

  23. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126. doi:10.1093/jxb/ern059

    PubMed  Article  CAS  Google Scholar 

  24. Fischer CR, Colinas C (1996) Methodology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. In: Proceedings of the 1st international conference in mycorrhizae, Berkeley, California

  25. Frochot H, Picard JF, Dreyfus P (1986) La végétation herbacée obstacle aux plantations. Rev For Fr 37:271–279

    Article  Google Scholar 

  26. Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1051–1062

    Article  Google Scholar 

  27. Hernández A, Reyna S, Giner M, Folch L, Tagliaferro F (2001) Proyecto life-medio ambiente. Revalorización de bosques productores de trufa: un ejemplo de gestión sostenible. III Congreo Forestal Español, Granada

  28. Herr DG, Duchesne LC, Tellier R, Mcalpine RS, Peterson RL (1994) Effect of prescribed burning on the ectomycorrhizal infectivity of a forest soil. Int J Wildland Fire 4:95–102

    Article  Google Scholar 

  29. SPSS Inc (2008) SPSS for Windows Release 17.0.1 SPSS Inc., Chicago

  30. Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas. Institute of Terrestial Ecology Research Publication Nº 5. London

  31. Jakucs E, Agerer R, Bratek R (1998) Genea verrucosa Vitt. + Quercus spec. Descr Ectomycorrhizae 3:19–23

    Google Scholar 

  32. Jany JL, Martin TD, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests. Plant Soil 255:487–494

    Article  CAS  Google Scholar 

  33. Kaldorf M, Renker C, Fladung M, Buscot F (2004) Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza 14:295–306

    PubMed  Article  Google Scholar 

  34. Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68(1):45–55. doi:10.1007/s13595-010-0006-6

    Article  Google Scholar 

  35. Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332

    PubMed  Article  CAS  Google Scholar 

  36. Marsh B (1971) Measurement of length in random arrangements of lines. J Appl Ecol 8:265–267

    Article  Google Scholar 

  37. Massicotte HB, Trappe JM, Peterson RL, Melville LH (1992) Studies on Cenococcum geophilum. II. Sclerotium morphology, germination and formation in pure culture and growth pouches. Can J Bot 70:125–132

    Article  Google Scholar 

  38. McAfee BJ, Fortin JA (1986) Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J Bot 64:848–852

    Article  Google Scholar 

  39. Morris LA, Moss SA, Garbett WS (1993) Competitive interference between selected herbaceous and woody plants and Pinus taeda L. during two growing seasons following planting. For Sci 39:166–187

    Google Scholar 

  40. Napoli C, Mello A, Borra A, Vizzini A, Sourzat P, Bonfante P (2010) Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds. New Phytol 185:237–247. doi:10.1111/j.1469-8137.2009.03053.x

    PubMed  Article  CAS  Google Scholar 

  41. Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108

    PubMed  Article  CAS  Google Scholar 

  42. Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  43. Olivera A, Fischer CR, Bonet JA, Martínez de Aragon J, Colinas C (2011) Weed management and irrigation are key treatments in emerging black truffle (Tuber melanosporum) cultivation. New Forest 42(2):227–239. doi:10.1007/s11056-011-9249-9

    Article  Google Scholar 

  44. Pacioni G, Bologna MA, Laurenzi M (1991) Insect attraction by Tuber: a chemical explanation. Mycol Res 95:1359–1363

    Article  CAS  Google Scholar 

  45. Parladé X, Pera J, Alvarez IF (1997) La mycorhization controlée du douglas dans le nord de l’espagne: premiers résultats en plantation. Revue Forestiere Francaise 49:163–173

    Article  Google Scholar 

  46. Parladé X, Luque J, Pera J, Rincón AM (2004) Field performance of Pinus pinea and P. halepensis seedlings inoculated with Rhizopogon spp. and outplanted in formerly arable land. Ann For Sci 61:507–514

    Article  Google Scholar 

  47. Pilz DA, Perry DA (1984) Impact of clearcutting and slash burning on ectomycorrhizal associations of Douglas-fir seedlings. Can J For Res 14:94–100

    Article  Google Scholar 

  48. Plattner I, Hall IR (1995) Parasitism of nonhost plants by the mycorrhizal fungus Tuber melanosporum. Mycol Res 99:1367–1370

    Article  Google Scholar 

  49. Ramsey FL, Schafer DW (2002) The statistical sleuth, a course in methods of data analysis, 2nd edn. Duxbury Press, Belmont, CA

    Google Scholar 

  50. Real Decreto 289/2003, de 7 de marzo, sobre comercialización de los materiales forestales de reproducción. http://noticias.juridicas.com/base_datos/Admin/rd289-2003.html#c3

  51. Reyna S (2007) Trufa, truficultura y selvicultura trufera. Ed. Mundi-Prensa, Madrid

  52. Reyna S, García S, Folch L, Pérez R, Galiana F, Rodríguez JA, Domínguez JA, Saíz de Omeñaca JA, Zazo J (2004) Selvicultura trufera en montes mediterráneos. In: Vallejo VR, Alloza JA (eds) Avances en el estudio de la gestión del monte mediterráneo. Fundación CEAM, Valencia, pp 523–546

    Google Scholar 

  53. Richard F, Moreau PA, Selosse MA, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82:1711–1729

    Article  Google Scholar 

  54. Riffle JW, Tinus RW (1982) Ectomycorrhizal characteristics, growth, and survival of artificially inoculated ponderosa and Scots pines in a greenhoouse and plantation. For Sci 28:646–660

    Google Scholar 

  55. Samils N, Olivera A, Danell E, Alexander SJ, Fischer CR, Colinas C (2008) The socioeconomic impact of truffle cultivation in Rural Spain. Econ Bot 62(3):331–340

    Article  Google Scholar 

  56. Sayegh-Petkovsek S, Kraigher H (1999) Black types of ectomycorrhizae on six-month old Norway spruce seedlings. Phyton (Austria) 39:213–218

    Google Scholar 

  57. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  58. Sourzat P (1997) Guide pratique de trufficulture. Ed. Station d’expérimentations sur la truffe. Le Montat, Francia

  59. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699. doi:10.1111/j.1469-8137.2010.03523.x

    PubMed  Article  CAS  Google Scholar 

  60. Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungal community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359

    Article  Google Scholar 

  61. Streiblová E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01283.x

    PubMed  Google Scholar 

  62. Suz LM, Martín MP, Oliach D, Fischer CR, Colinas C (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum-Quercus ilex orchards. FEMS Microbiol Lett 285:72–78

    PubMed  Article  CAS  Google Scholar 

  63. Suz LM, Martín MP, Fischer CR, Bonet JA, Colinas C (2009) Can NPK fertilizers enhance seedling growth and mycorrhizal status of Tuber melanosporum-inoculated Quercus ilex seedlings? Mycorrhiza 20(5):349–360

    PubMed  Article  Google Scholar 

  64. Torres P, Honrubia M (1997) Changes and effects of a natural fire on ectomycorrhizal inoculum potential of soil in a Pinus halepensis forest. For Ecol Manage 96:189–196

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Department of Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya and by the Diputació de Lleida.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Martínez de Aragón.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martínez de Aragón, J., Fischer, C., Bonet, J.A. et al. Economically profitable post fire restoration with black truffle (Tuber melanosporum) producing plantations. New Forests 43, 615–630 (2012). https://doi.org/10.1007/s11056-012-9316-x

Download citation

Keywords

  • Forest fire
  • Reforestation
  • Quercus ilex
  • Native fungi
  • Fungal competitiveness