New Forests

, Volume 43, Issue 5–6, pp 615–630

Economically profitable post fire restoration with black truffle (Tuber melanosporum) producing plantations

  • Juan Martínez de Aragón
  • Christine Fischer
  • José Antonio Bonet
  • Antoni Olivera
  • Daniel Oliach
  • Carlos Colinas
Article

Abstract

Cultivating black truffle (Tuber melanosporum Vittad.) is highly profitable in sites suitable for its development. Land use history is an important factor when choosing suitable habitat, and lands with non-ectomycorrhizal host species are recommended when introducing T. melanosporum-inoculated seedlings in order to reduce competition from native, soil-borne ectomycorrhizal (ECM) inoculum. Nearly every year Mediterranean wildfires cause the loss of forested lands where soil and climatic characteristics are suitable for truffle cultivation. Introducing T. melanosporum-inoculated seedlings in these sites could promote reforestation with a native ECM fungus and, in addition, may provide economic incentives. We tested the viability of burnt forest lands for truffle cultivation by introducing T. melanosporum-inoculated Quercus ilex seedlings in burnt forest sites with and without resprouting forest species which act as repositories for native ECM fungi. We also evaluated the role of the ECM host plants, which resprout after a forest fire, in the maintenance and dynamic processes of the ECM fungal community. The study followed a factorial design with two levels: (1) T. melanosporum-inoculated and non-inoculated Q. ilex seedlings and (2) presence and absence of ECM host plants resprouting after the fire. We established 10 experimental plots with 360 holm oaks. After four and a half years, the truffle-inoculated holm oaks maintained 36 % of their root tips colonized with T. melanosporum, and 10 years after plantations, 26.2 % of the surviving inoculated holm oaks displayed a “truffle burn” area. A greater ECM morphotype richness was associated with seedlings planted in plots with the presence of ECM host plants, whereas the T. melanosporum mycorrhizal ratio was constant. These results suggest that reforestation with T. melanosporum-inoculated seedlings can be successful following forest fires and highlights the competitiveness of this fungus within the ECM community in these soils.

Keywords

Forest fire Reforestation Quercus ilex Native fungi Fungal competitiveness 

References

  1. Agerer R (1987–2004) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwäbisch Gmünd, MunichGoogle Scholar
  2. Agerer R, Danielson R, Egli S, Ingleby K, Luoma D, Treu R (1996–2002) Descriptions of ectomycorrhizae 1–5. Einhorn-Verlag, Schwäbisch Gmünd, MunichGoogle Scholar
  3. Amaranthus MP, Trappe JM, Perry DA (1993) Soil moisture, native revegetation, and Pinus lambertiana seedling survival, growth and mycorrhiza formation following wildfire and grass seeding. Restor Ecol 1:188–195CrossRefGoogle Scholar
  4. Anderson IC, Bastias BA, Genney DR, Parkin PI, Cairney JWG (2007) Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol Res 111:482–486PubMedCrossRefGoogle Scholar
  5. Bardgett R (2005) The biology of soil. A community and ecosystem approach. Oxford University Press, OxfordGoogle Scholar
  6. Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Rome, pp 163Google Scholar
  7. Bonet JA, Fischer CR, Colinas C (2006) Cultivation of black truffle to promote reforestation and land-use stability. Agronomy 26:69–76Google Scholar
  8. Bonet JA, Oliach D, Fischer CR, Olivera C, Martínez de Aragón J, Colinas C (2009) Cultivation methods of the black truffle, the most profitable mediterranean non-wood forest product; a state of the art review. EFI proceedings, 57: modelling, valuing and managing mediterranean forest ecosystems for non-timber goods and services, pp 57–71Google Scholar
  9. Borchers SL, Perry DA (1990) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clearcuts. Can J For Res 20:712–721CrossRefGoogle Scholar
  10. Borges De Souza LA, Silva Filho G, Lopes De Oliveira V (2004) Eficiência de fungos ectomicorrízicos na absorção de fósforo e na promoção do crescimento de eucalipto. Pesq Agropec Bras 39:349–355CrossRefGoogle Scholar
  11. Byrot Y (ed) (2009) Living with wildfires: what science can tell us. European Forest Institute. Discussion Paper 15, pp 82Google Scholar
  12. Castro J, Zamora R, Hódar JA, Gómez JM (2002) Use of shrubs as nurse plants: a new technique for reforestation in mediterranean mountains. Restor Ecol 10:297–305. doi:10.1046/j.1526-100X.2002.01022.x CrossRefGoogle Scholar
  13. Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V (2011) Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytol 189:751–764PubMedCrossRefGoogle Scholar
  14. Chen DM, Cairney JWG (2002) Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res 106:532–540CrossRefGoogle Scholar
  15. Colinas C, Perry D, Molina R, Amaranthus M (1994) Survival and growth of Pseudotsuga menziesii seedlings inoculated with biocide-treated soils at planting in a degraded clearcut. Can J For Res 24:1741–1749CrossRefGoogle Scholar
  16. Coll L, Balandier P, Pocon-Cochard C, Prevosto B, Curt T (2003) Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann For Sci 60:593–600CrossRefGoogle Scholar
  17. CREAF (1992) Inventari Ecològic i Forestal de Catalunya. Departament d’Agricultura, Ramaderia i PescaGoogle Scholar
  18. Dahlberg A, Schimmel J, Taylor A, Johannesson H (2001) Post-fire legacy of ectomycorrhizal fungal communities in the Swedish Boreal forest in relation to fire severity and logging intensity. Biol Conserv 100:151–161CrossRefGoogle Scholar
  19. De Miguel A, Sáez R (2005) Algunas micorrizas competidoras de plantaciones truferas. Publicaciones de Biología, Universidad de Navarra, Serie Botánica 16:1–18Google Scholar
  20. De Román M, De Miguel A (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482PubMedCrossRefGoogle Scholar
  21. Domínguez JA, Serrano JS, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. Forest Ecol Manag 231:226–233CrossRefGoogle Scholar
  22. Fasolo-Bonfante P, Fontana A (1971) Studi sull’ecologia del Tuber melanosporum i dimostrazioni di un effecto fitotossico. Allionia 17:47–54Google Scholar
  23. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126. doi:10.1093/jxb/ern059 PubMedCrossRefGoogle Scholar
  24. Fischer CR, Colinas C (1996) Methodology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. In: Proceedings of the 1st international conference in mycorrhizae, Berkeley, CaliforniaGoogle Scholar
  25. Frochot H, Picard JF, Dreyfus P (1986) La végétation herbacée obstacle aux plantations. Rev For Fr 37:271–279CrossRefGoogle Scholar
  26. Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1051–1062CrossRefGoogle Scholar
  27. Hernández A, Reyna S, Giner M, Folch L, Tagliaferro F (2001) Proyecto life-medio ambiente. Revalorización de bosques productores de trufa: un ejemplo de gestión sostenible. III Congreo Forestal Español, GranadaGoogle Scholar
  28. Herr DG, Duchesne LC, Tellier R, Mcalpine RS, Peterson RL (1994) Effect of prescribed burning on the ectomycorrhizal infectivity of a forest soil. Int J Wildland Fire 4:95–102CrossRefGoogle Scholar
  29. SPSS Inc (2008) SPSS for Windows Release 17.0.1 SPSS Inc., ChicagoGoogle Scholar
  30. Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas. Institute of Terrestial Ecology Research Publication Nº 5. LondonGoogle Scholar
  31. Jakucs E, Agerer R, Bratek R (1998) Genea verrucosa Vitt. + Quercus spec. Descr Ectomycorrhizae 3:19–23Google Scholar
  32. Jany JL, Martin TD, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests. Plant Soil 255:487–494CrossRefGoogle Scholar
  33. Kaldorf M, Renker C, Fladung M, Buscot F (2004) Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza 14:295–306PubMedCrossRefGoogle Scholar
  34. Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68(1):45–55. doi:10.1007/s13595-010-0006-6 CrossRefGoogle Scholar
  35. Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332PubMedCrossRefGoogle Scholar
  36. Marsh B (1971) Measurement of length in random arrangements of lines. J Appl Ecol 8:265–267CrossRefGoogle Scholar
  37. Massicotte HB, Trappe JM, Peterson RL, Melville LH (1992) Studies on Cenococcum geophilum. II. Sclerotium morphology, germination and formation in pure culture and growth pouches. Can J Bot 70:125–132CrossRefGoogle Scholar
  38. McAfee BJ, Fortin JA (1986) Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J Bot 64:848–852CrossRefGoogle Scholar
  39. Morris LA, Moss SA, Garbett WS (1993) Competitive interference between selected herbaceous and woody plants and Pinus taeda L. during two growing seasons following planting. For Sci 39:166–187Google Scholar
  40. Napoli C, Mello A, Borra A, Vizzini A, Sourzat P, Bonfante P (2010) Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds. New Phytol 185:237–247. doi:10.1111/j.1469-8137.2009.03053.x PubMedCrossRefGoogle Scholar
  41. Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108PubMedCrossRefGoogle Scholar
  42. Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145CrossRefGoogle Scholar
  43. Olivera A, Fischer CR, Bonet JA, Martínez de Aragon J, Colinas C (2011) Weed management and irrigation are key treatments in emerging black truffle (Tuber melanosporum) cultivation. New Forest 42(2):227–239. doi:10.1007/s11056-011-9249-9 CrossRefGoogle Scholar
  44. Pacioni G, Bologna MA, Laurenzi M (1991) Insect attraction by Tuber: a chemical explanation. Mycol Res 95:1359–1363CrossRefGoogle Scholar
  45. Parladé X, Pera J, Alvarez IF (1997) La mycorhization controlée du douglas dans le nord de l’espagne: premiers résultats en plantation. Revue Forestiere Francaise 49:163–173CrossRefGoogle Scholar
  46. Parladé X, Luque J, Pera J, Rincón AM (2004) Field performance of Pinus pinea and P. halepensis seedlings inoculated with Rhizopogon spp. and outplanted in formerly arable land. Ann For Sci 61:507–514CrossRefGoogle Scholar
  47. Pilz DA, Perry DA (1984) Impact of clearcutting and slash burning on ectomycorrhizal associations of Douglas-fir seedlings. Can J For Res 14:94–100CrossRefGoogle Scholar
  48. Plattner I, Hall IR (1995) Parasitism of nonhost plants by the mycorrhizal fungus Tuber melanosporum. Mycol Res 99:1367–1370CrossRefGoogle Scholar
  49. Ramsey FL, Schafer DW (2002) The statistical sleuth, a course in methods of data analysis, 2nd edn. Duxbury Press, Belmont, CAGoogle Scholar
  50. Real Decreto 289/2003, de 7 de marzo, sobre comercialización de los materiales forestales de reproducción. http://noticias.juridicas.com/base_datos/Admin/rd289-2003.html#c3
  51. Reyna S (2007) Trufa, truficultura y selvicultura trufera. Ed. Mundi-Prensa, MadridGoogle Scholar
  52. Reyna S, García S, Folch L, Pérez R, Galiana F, Rodríguez JA, Domínguez JA, Saíz de Omeñaca JA, Zazo J (2004) Selvicultura trufera en montes mediterráneos. In: Vallejo VR, Alloza JA (eds) Avances en el estudio de la gestión del monte mediterráneo. Fundación CEAM, Valencia, pp 523–546Google Scholar
  53. Richard F, Moreau PA, Selosse MA, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82:1711–1729CrossRefGoogle Scholar
  54. Riffle JW, Tinus RW (1982) Ectomycorrhizal characteristics, growth, and survival of artificially inoculated ponderosa and Scots pines in a greenhoouse and plantation. For Sci 28:646–660Google Scholar
  55. Samils N, Olivera A, Danell E, Alexander SJ, Fischer CR, Colinas C (2008) The socioeconomic impact of truffle cultivation in Rural Spain. Econ Bot 62(3):331–340CrossRefGoogle Scholar
  56. Sayegh-Petkovsek S, Kraigher H (1999) Black types of ectomycorrhizae on six-month old Norway spruce seedlings. Phyton (Austria) 39:213–218Google Scholar
  57. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  58. Sourzat P (1997) Guide pratique de trufficulture. Ed. Station d’expérimentations sur la truffe. Le Montat, FranciaGoogle Scholar
  59. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699. doi:10.1111/j.1469-8137.2010.03523.x PubMedCrossRefGoogle Scholar
  60. Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungal community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359CrossRefGoogle Scholar
  61. Streiblová E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01283.x PubMedGoogle Scholar
  62. Suz LM, Martín MP, Oliach D, Fischer CR, Colinas C (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum-Quercus ilex orchards. FEMS Microbiol Lett 285:72–78PubMedCrossRefGoogle Scholar
  63. Suz LM, Martín MP, Fischer CR, Bonet JA, Colinas C (2009) Can NPK fertilizers enhance seedling growth and mycorrhizal status of Tuber melanosporum-inoculated Quercus ilex seedlings? Mycorrhiza 20(5):349–360PubMedCrossRefGoogle Scholar
  64. Torres P, Honrubia M (1997) Changes and effects of a natural fire on ectomycorrhizal inoculum potential of soil in a Pinus halepensis forest. For Ecol Manage 96:189–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Juan Martínez de Aragón
    • 1
  • Christine Fischer
    • 1
  • José Antonio Bonet
    • 1
    • 2
  • Antoni Olivera
    • 1
  • Daniel Oliach
    • 1
  • Carlos Colinas
    • 1
    • 2
  1. 1.Centre Tecnològic Forestal de CatalunyaSolsonaSpain
  2. 2.Departament de Producció Vegetal i Ciència ForestalUniversitat de LleidaLleidaSpain

Personalised recommendations