New Forests

, Volume 43, Issue 4, pp 411–428 | Cite as

Genetic diversity in natural populations of Gmelina arborea: implications for breeding and conservation

  • Alison K. S. Wee
  • ChunHong Li
  • William S. Dvorak
  • Yan HongEmail author


Gmelina arborea is a valuable plantation tree species that is native to South and Southeast Asia. In this study, 534 samples representing 19 natural populations in India, China, Thailand and Myanmar were analyzed with 10 polymorphic microsatellite markers. The genetic diversity analysis revealed highly polymorphic loci (Na = 16.4), a good level of genetic diversity (Ho = 0.56; He = 0.83) and the deficiency of heterozygotes in G. arborea populations evidenced by positive fixation index and deviation from Hardy–Weinberg Equilibrium in all loci and most populations. The Analysis of Molecular Variance attributed 21, 10 and 69% of total genetic diversity to among-region, among-population (within region) and within-population variation. Unweighted Pair Group Method with Arithmetic Mean dendrogram and Principle Coordinate Analysis revealed three separate clusters composed of China, India and Thailand/Myanmar that were consistent with geographical distance and the presence of natural barriers to gene flow. Populations from within India grouped together genetically consistent with geographical locations, with the exception of the Nowgong population (eastern India), that might have originated from the Kasa area (western India) with which it has high genetic similarity. Understanding genetic diversity and structure of G. arborea populations serve as an important reference for tree breeding programs and conservation strategy. Breeding populations of G. arborea should include selections from each of the major geographic regions to maximize genetic diversity and heterosis. Vegetative propagated clones of elite trees can be used for plantation to address the issue of high level of segregation among seed derived plants.


SSR Gmelina arborea Genetic diversity Genetic structure Plantation Tree improvement 



Temasek Life Sciences Laboratory provided funding to this research. We thank Mr. Willi Woodbridge, Camcore, USA for his development of the Gmelina map. We thank Mr. Mike Tighe, (formerly Camcore, USA), Mr. Arif Purwanto (Sumalindo, Indonesia) and Mr. Miguel Rodriguez (Pizano, Colombia) for sending plant materials or DNAs for this study.


  1. Alves RM, Sebbenn AM, Artero AS, Clement C, Figueira A (2007) High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genet Genomes 3(4):289–298CrossRefGoogle Scholar
  2. Azevedo NCR, Kanashiro M, Ciampi AY, Grattapaglia D (2007) Genetic structure and mating system of Manilkara huberi (Ducke) A. Chev., a heavily logged Amazonian timber species. J Hered 98(7):646–654PubMedCrossRefGoogle Scholar
  3. Bolstad PV, Bawa KS (1982) Self incompatibility in Gmelina arborea L. (Verbenaceae). Autoincompatibilidad en Gmelina arborea L. (Verbenaceae). Silvae Genetica 31(1):19–21Google Scholar
  4. Butcher PA, Skinner AK, Gardiner CA (2005) Increased inbreeding and inter-species gene flow in remnant populations of the rare Eucalyptus benthamii. Conserv Genet 6(2):213–226CrossRefGoogle Scholar
  5. Byrne M, Marquezgarcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44(3):331–341. doi: 10.1071/BT9960331 CrossRefGoogle Scholar
  6. Camcore (2007) The Gmelina breeding program at PT Sumalindo Lestari Jaya. Camcore annual report. Department of Forestry & Environmental Science, NC State University, Raleigh, North Carolina, USAGoogle Scholar
  7. Cardoso MA, Provan J, Powell W, Ferreira PCG, De Oliveira DE (1998) High genetic differentiation among remnant populations of the endangered Caesalpinia echinata Lam. (Leguminosae-Caesalpinioideae). Mol Ecol 7(5):601–608CrossRefGoogle Scholar
  8. Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10(2):349–356PubMedCrossRefGoogle Scholar
  9. Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12(3):753–764PubMedCrossRefGoogle Scholar
  10. Dvorak WS (2004) World view of Gmelina arborea: opportunities and challenges. New Forests 28(2):111–126CrossRefGoogle Scholar
  11. Dvorak WS, Hodge GR, Payn KG (2008) The conservation and breeding of Eucalyptus urophylla: A case study to better protect important populations and improved productivity. South Forests 70(2):77–85CrossRefGoogle Scholar
  12. Fofana IJ, Lidah YJ, Diarrassouba N, N’guetta SPA, Sangare A, Verhaegen D (2008) Genetic structure and conservation of Teak (Tectona grandis) plantations in Côte d’Ivoire, revealed by site specific recombinase (SSR). Trop Conserv Sci 1(3):279–292Google Scholar
  13. Hodge GR, Dvorak WS (2004) The CAMCORE international provenance/progeny trials of Gmelina arborea: genetic parameters and potential gain. New Forests 28(2):147–166CrossRefGoogle Scholar
  14. Jain N, Shasany AK, Sundaresan V, Rajkumar S, Darokar MP, Bagchi GD, Gupta AK, Kumar S, Khanuja SPS (2003) Molecular diversity in Phyllanthus amarus assessed through RAPD analysis. Curr Sci 85(10):1454–1458Google Scholar
  15. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population genetics 49(4):725–738Google Scholar
  16. Latouche-Halle C, Ramboer A, Bandou E, Caron H, Kremer A (2003) Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a neotropical tree population. Heredity 91(2):181–190PubMedCrossRefGoogle Scholar
  17. Lauridsen EB, Kjaer ED (2002) Provenance research in Gmelina arborea Linn., Roxb. A summary of results from three decades of research and a discussion of how to use them. Int For Rev 4(1):20–29Google Scholar
  18. Lee SL, Wickneswari R, Mahani MC, Zakri AH (2000) Genetic diversity of a tropical tree species, Shorea leprosula Miq. (Dipterocarpaceae), in Malaysia: implications for conservation of genetic resources and tree improvement. Biotropica 32(2):213–224Google Scholar
  19. Lemes MR, Gribel R, Proctor J, Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Mol Ecol 12(11):2875–2883PubMedCrossRefGoogle Scholar
  20. Liao MH, Li CH, Qi JF, Hong Y (2010) Isolation and characterization of 11 polymorphic microsatellite loci for Gmelina arborea. Mol Ecol Resour 10:1106–1108PubMedCrossRefGoogle Scholar
  21. Lowe AJ, Gillies ACM, Wilson J, Dawson IK (2000) Conservation genetics of bush mango from central/west Africa: implications from random amplified polymorphic DNA analysis. Mol Ecol 9(7):831–841PubMedCrossRefGoogle Scholar
  22. Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and application. Blackwell, LondonGoogle Scholar
  23. McGowen MH, Wiltshire RJE, Potts BM, Vaillancourt RE (2001) The origin of Eucalyptus vernicosa, a unique shrub eucalypt. Biol J Linn Soc 74(3):397–405Google Scholar
  24. Moriguchi Y, Yamazaki Y, Taira H, Tsumura Y (2010) Mating patterns in an indoor miniature Cryptomeria japonica seed orchard as revealed by microsatellite markers. New Forests 39(3):261–273. doi: 10.1007/s11056-009-9169-0 CrossRefGoogle Scholar
  25. Naik D, Singh D, Vartak V, Paranjpe S, Bhargava S (2009) Assessment of morphological and genetic diversity in Gmelina arborea Roxb. New Forests 38(1):99–115. doi: 10.1007/s11056-009-9134-y CrossRefGoogle Scholar
  26. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13(5):1143–1155PubMedCrossRefGoogle Scholar
  27. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295CrossRefGoogle Scholar
  28. Raju AJS, Rao SP (2006) Pollination by bees and passerine birds and seed dispersal by monkeys in the white teak Gmelina arborea Roxb., a commercially important timber tree species in the Eastern Ghats. Curr Sci 90(2):232–236Google Scholar
  29. Ramakrishnan AP, Meyer SE, Fairbanks DJ, Coleman CE (2006) Ecological significance of microsatellite variation in western North American populations of Bromus tectorum. Plant Species Biol 21(2):61–73CrossRefGoogle Scholar
  30. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249Google Scholar
  31. Rohlf FJ (1998) NTSYS-pc version 2.0. Numerical taxonomy and multivariate analysis system, version 2.0 edn. Exeter Software, Setauket, New YorkGoogle Scholar
  32. White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99(4):2038–2042PubMedCrossRefGoogle Scholar
  33. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefGoogle Scholar
  34. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11(1):1–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alison K. S. Wee
    • 1
  • ChunHong Li
    • 2
  • William S. Dvorak
    • 3
  • Yan Hong
    • 2
    Email author
  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeSingapore
  3. 3.Camcore, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighUSA

Personalised recommendations