New Forests

, Volume 38, Issue 1, pp 35–52 | Cite as

Development of transgenic hybrid sweetgum (Liquidambar styraciflua × L. formosana) expressing γ-glutamylcysteine synthetase or mercuric reductase for phytoremediation of mercury pollution

  • Jianliang Dai
  • Rebecca Balish
  • Richard B. Meagher
  • Scott A. Merkle
Article

Abstract

Using Agrobacterium-mediated gene transfer, we generated transgenic hybrid sweetgum (Liquidambar styraciflua × L. formosana) overexpressing two types of genes to enhance plant remediation of mercury-contaminated soil and water: bacterial γ-glutamylcysteine synthetase gene (ECS), the first and most important enzyme in phytochelatin synthesis, or various genes encoding a mercuric ion reductase (merA9, merA18, merA77). Hybrid sweetgum proembryogenic masses (PEMs) constitutively overexpressing ECS were able to grow in the presence of 50 μM HgCl2, which inhibited wild-type PEMs, but plantlets regenerated from the PEMs had abnormal form and did not survive for more than a few weeks following germination. In contrast, mature somatic embryos generated from PEMs constitutively overexpressing merA9 and merA18 converted to normal plantlets on germination medium containing 25 μM HgCl2, while control embryos were killed on 25 μM Hg(II)-medium. Transgenic merA plantlets displayed enhanced resistance to Hg(II) and released Hg(0) two to three times more efficiently than the wild-type plantlets.

Keywords

Phytoremediation Mercury Liquidambar styraciflua × L. formosana Transgenic 

References

  1. Arisi A-CM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149. doi:10.1034/j.1399-3054.2000.100206.x CrossRefGoogle Scholar
  2. Bizily S, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813. doi:10.1073/pnas.96.12.6808 PubMedCrossRefGoogle Scholar
  3. Bizily S, Rugh CL, Meagher RB (2000) Efficient phytodetoxification of the environmental pollutant methylmercury by engineered plants. Nat Biotechnol 18:213–217. doi:10.1038/72678 PubMedCrossRefGoogle Scholar
  4. Che D, Meagher RB, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in eastern cottonwood confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319. doi:10.1046/j.1467-7652.2003.00031.x PubMedCrossRefGoogle Scholar
  5. Chen ZZ, Stomp AM (1991) Transformation of Liquidambar styraciflua L. (sweetgum) using Agrobacterium tumefaciens. (Abstract) In: Proceedings of the 21st southern tree improvement conference, Knoxville, TN, 17–20 June 1991, p 315Google Scholar
  6. Cobbett C, Meagher R (2003) Phytoremediation and the Arabidopsis proteome. In: Meyerowitz E, Somerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–22Google Scholar
  7. Dai J, Vendrame W, Merkle SA (2004) Enhancing the productivity of hybrid yellow-poplar and hybrid sweetgum embryogenic cultures. In Vitro Cell Dev Biol Plant 40:376–383. doi:10.1079/IVP2004538 CrossRefGoogle Scholar
  8. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145. doi:10.1038/nbt747 PubMedCrossRefGoogle Scholar
  9. Gullner G, Kömives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979. doi:10.1093/jexbot/52.358.971 PubMedCrossRefGoogle Scholar
  10. Han KH, Meilan R, Ma C, Strauss SH (2000) An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Rep 19:315–320. doi:10.1007/s002990050019 CrossRefGoogle Scholar
  11. Harlow WM, Harrar ES, Hardin JW, White FM (1996) Textbook of dendrology, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  12. Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376PubMedGoogle Scholar
  13. Koprivova A, Kopriva S, Jager D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670. doi:10.1055/s-2002-37399 CrossRefGoogle Scholar
  14. Kim MK, Sommer HE, Dean JF, Merkle SA (1999) Transformation of sweetgum via microprojectile bombardment of nodule cultures. In Vitro Cell Dev Biol Plant 35:37–42. doi:10.1007/s11627-999-0007-z CrossRefGoogle Scholar
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0 PubMedCrossRefGoogle Scholar
  16. Li Y, Kandasamy MK, Meagher RB (2001) Rapid isolation of monoclonal antibodies. Monitoring enzymes in the phytochelatin synthesis pathway. Plant Physiol 127:711–719. doi:10.1104/pp.127.3.711 PubMedCrossRefGoogle Scholar
  17. Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial γ-glutamylcysteine synthetase. Environ Toxicol Chem 24:1376–1386. doi:10.1897/04-340R.1 PubMedCrossRefGoogle Scholar
  18. Li Y, Heaton ACP, Carreira L, Meagher RB (2006a) Enhanced tolerance to and accumulation of mercury, but not arsenic, in plants overexpressing two enzymes required for thiol peptide synthesis. Physiol Plant 128:48–57. doi:10.1111/j.1399-3054.2006.00732.x CrossRefGoogle Scholar
  19. Li Y, Dhankher OP, Carreira L, Smith AP, Meagher RB (2006b) The shoot-specific expression of γ−glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298. doi:10.1104/pp.105.074815 PubMedCrossRefGoogle Scholar
  20. Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in eastern cottonwood enhances processing of organomercury. Plant Biotechnol J 5:254–262. doi:10.1111/j.1467-7652.2006.00236.x PubMedCrossRefGoogle Scholar
  21. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 13:153–162. doi:10.1016/S1369-5266(99)00054-0 CrossRefGoogle Scholar
  22. Meagher RB (2007) Multigene strategies for engineering the phytoremediation of mercury and arsenic. In: Xu Z, Li J, Xue Y, Yang W (eds) Biotechnology and sustainable agriculture 2006 and beyond: proceedings of the 11th IAPTC&B congress. Springer, Beijing, China, pp 49–60Google Scholar
  23. Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647. doi:10.1093/jexbot/49.321.623 CrossRefGoogle Scholar
  24. Peuke AD, Rennenberg H (2005) Phytoremediation with transgenic trees. Z Naturforsch 60:199–207Google Scholar
  25. Rugh CL, Wilde HD, Stack NM, Thomson DM, Summer AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187. doi:10.1073/pnas.93.8.3182 PubMedCrossRefGoogle Scholar
  26. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow-poplar for mercury phytoremediation. Nat Biotechnol 16:925–928. doi:10.1038/nbt1098-925 PubMedCrossRefGoogle Scholar
  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning-a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  28. Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603. doi:10.1111/j.1467-7652.2006.00209.x PubMedCrossRefGoogle Scholar
  29. Stomp AM, Han KH, Wilbert S, Gordon MP (1993) Genetic improvement of tree species for remediation of hazardous wastes. In Vitro Cell Dev Biol 29P:227–232Google Scholar
  30. Sullivan J, Lagrimini LM (1993) Transformation of Liquidambar styraciflua using Agrobacterium tumefaciens. Plant Cell Rep 12:303–306. doi:10.1007/BF00237423 CrossRefGoogle Scholar
  31. Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15. doi:10.1007/s00299-003-0670-1 PubMedCrossRefGoogle Scholar
  32. Vendrame WA, Holliday CP, Merkle SA (2001) Clonal propagation of hybrid sweetgum (Liquidambar styraciflua × L. formosana) by somatic embryogenesis. Plant Cell Rep 20:691–695. doi:10.1007/s00299-001-0394-z CrossRefGoogle Scholar
  33. Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by over-expressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177. doi:10.1104/pp.121.4.1169 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jianliang Dai
    • 1
    • 3
  • Rebecca Balish
    • 2
    • 4
  • Richard B. Meagher
    • 2
  • Scott A. Merkle
    • 1
  1. 1.Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensUSA
  2. 2.Department of GeneticsUniversity of GeorgiaAthensUSA
  3. 3.School of MedicineTulane UniversityNew OrleansUSA
  4. 4.Microbiology DepartmentMiami UniversityOxfordUSA

Personalised recommendations