New Forests

, 37:35 | Cite as

Euphorbia abyssinica latex promotes rooting of Boswellia cuttings

  • Aklilu Negussie
  • Raf Aerts
  • Kindeya Gebrehiwot
  • Els Prinsen
  • Bart Muys
Article

Abstract

Traditional knowledge in northern Ethiopia points towards the root-stimulating properties of the latex found in Euphorbia abyssinica (EAG). Stem cuttings of EAG as well as cuttings of other species treated with EAG latex reportedly root easily in dry soil. This could be attributable to endogenous auxins contained in the latex. We screened EAG latex for auxins and precursor molecules using analytical LC-MS/MS, and tested the effect of EAG latex on the rooting of woody cuttings of Boswellia papyrifera, a threatened multipurpose tree. The EAG latex contained indole acetic acid (IAA) (0.06 μg/g latex), an auxin controlling apical dominance and lateral rooting, as well as IAA metabolites and conjugates. Boswellia cuttings treated with EAG latex rooted significantly sooner and showed higher survival ratios than untreated controls. EAG is widely available and its latex easy to obtain. Therefore it is a promising source of a natural plant growth regulator which may be used for improving low technology vegetative propagation of woody species in East and Northeast Africa, including the threatened Boswellia tree.

Keywords

Auxins Ethiopia Indole acetic acid (IAA) Rooting response Traditional knowledge 

References

  1. Bekele-Tessema A, Birnie A, Tengnäs B (1993) Useful trees and shrubs for Ethiopia: identification, propagation and management for agricultural and pastoral communities. Regional Soil Conservation Unit (RSCU), Swedish International Development Authority, Nairobi, KenyaGoogle Scholar
  2. Berhe D, Negash L (1998) Asexual propagation of Juniperus procera from Ethiopia: a contribution to the conservation of African pencil cedar. For Ecol Manag 112:179–190CrossRefGoogle Scholar
  3. Bialek K, Cohen JD (1989) Quantization of indole acetic acid conjugates in bean seeds by direct tissue hydrolysis. Plant Physiol 90:398–400PubMedCrossRefGoogle Scholar
  4. Bland JM, Altman DG (1998) Statistics notes—survival probabilities (the Kaplan-Meier method). BMJ 317:1572PubMedGoogle Scholar
  5. Crouch IJ, Vanstaden J (1993) Evidence for the presence of plant-growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29Google Scholar
  6. Crouch IJ, Smith MT, Vanstaden J, Lewis MJ, Hoad GV (1992) Identification of auxins in a commercial seaweed concentrate. J Plant Physiol 139:590–594Google Scholar
  7. Danthu P, Soloviev P, Gaye A, Sarr A, Seck M, Thomas I (2002) Vegetative propagation of some West African Ficus species by cuttings. Agrofor Syst 55:57–63. doi:10.1023/A:1020254808316 CrossRefGoogle Scholar
  8. De la Rosa-Ibarra M, Villareal JA (2000) Effect of leaf extract of Larrea tridentata Cav. on germination and growth of barley seedlings. Phyton 66:83–86Google Scholar
  9. Fichtl R, Admasu A (1994) Honeybee flora of Ethiopia. The National Herbarium, Addis Ababa University and Deutscher Entwicklungsdienst (DED) Weichersheim, Margraf Verlag, GermanyGoogle Scholar
  10. Gebrehiwot K, Muys B, Haile M, Mitloehner R (2003) Introducing Boswellia papyrifera (Del.) Hochst and its non-timber forest product, frankincense. Int For Rev 5:348–353Google Scholar
  11. Husen A, Pal M (2007) Metabolic changes during adventitious root primordium development in Tectona grandis Linn. f. (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New For 33:309–323. doi:10.1007/s11056-006-9030-7 Google Scholar
  12. Leakey RRB (1990) Nauclea diderrichii: rooting of stem cuttings, clonal variation in shoot dominance, and branch plagiotropism. Trees Struct Funct 4:164–169Google Scholar
  13. Lemenih M, Feleke S, Tadesse W (2007) Constraints to smallholders production of frankincense in Metema district, North-western Ethiopia. J Arid Environ 71:393–403. doi:10.1016/j.jaridenv.2007.04.006 CrossRefGoogle Scholar
  14. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474. doi:10.1046/j.1365-313X.2001.01173.x PubMedCrossRefGoogle Scholar
  15. Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Nonmanly J et al (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104. doi:10.1105/tpc.104.029272 PubMedCrossRefGoogle Scholar
  16. Longman KA (2002) Tropical trees: rooting cuttings—A practical manual. Blaketon Hall, Exeter, UKGoogle Scholar
  17. Mouchel CF, Leyser O (2007) Novel phytohormones involved in long-range signaling. Curr Opin Plant Biol 10:473–476. doi:10.1016/j.pbi.2007.08.005 PubMedCrossRefGoogle Scholar
  18. Negash L (2003a) Vegetative propagation of the threatened African wild olive (Olea europaea L. subsp. cuspidata (Wall. ex DC.) Ciffieri). New For 26:137–146. doi:10.1023/A:1024441428537 Google Scholar
  19. Negash L (2003b) Vegetative propagation of the threatened East African Yellowwood (Podocarpus falcatus). S Afr J Bot 69:170–175Google Scholar
  20. Negussie A, Aerts R, Gebrehiwot K, Muys B (2008) Seedling mortality causes recruitment limitation of Boswellia papyrifera in northern Ethiopia. J Arid Environ 72:378–383. doi:10.1016/j.jaridenv.2007.06.009 CrossRefGoogle Scholar
  21. Niemi K, Vuorinen T, Ernstsen A, Haggman H (2002) Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiol 22:1231–1239PubMedGoogle Scholar
  22. Ogbazghi W, Rijkers T, Wessel M, Bongers F (2006) Distribution of the Frankincense tree Boswellia papyrifera in Eritrea: the role of environment and land use. J Biogeogr 33:524–535. doi:10.1111/j.1365-2699.2005.01407.x CrossRefGoogle Scholar
  23. Prinsen E, Van Dongen W, Esmans EL, Van Onckelen H (1997) HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyse indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32:12–22. doi :10.1002/(SICI)1096-9888(199701)32:1<12::AID-JMS444>3.0.CO;2-7CrossRefGoogle Scholar
  24. Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA (1998) Micro and capillary liquid chromatography-tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A 826:25–37. doi:10.1016/S0021-9673(98)00763-8 CrossRefGoogle Scholar
  25. Prinsen E, Van Laer S, Ögden S, Van Onckelen H (2000) Auxin analysis. In: Roberts JA, Tucker GA (eds) Methods in molecular biology, vol 141, Plant hormones. Humana Press, Totowa, pp 49–65Google Scholar
  26. Rijkers T, Ogbazghi W, Wessel M, Bongers F (2006) The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol 43:1188–1195. doi:10.1111/j.1365-2664.2006.01215.x CrossRefGoogle Scholar
  27. Romero JL (2004) A review of propagation programs for Gmelina arborea. New For 28:245–254. doi:10.1023/B:NEFO.0000040951.93838.6d Google Scholar
  28. Swamy SL, Puri S, Singh AK (2002) Effect of auxins (IBA and NAA) and season on rooting of juvenile and mature hardwood cuttings of Robinia pseudoacacia and Grewia optiva. New For 23:143–157. doi:10.1023/A:1015653131706 Google Scholar
  29. Tchoundjeu Z, Avana ML, Leakey RRB, Simons AJ, Assah E, Duguma B et al (2002) Vegetative propagation of Prunus africana: effects of rooting medium, auxin concentrations and leaf area. Agrofor Syst 54:183–192. doi:10.1023/A:1016049004139 CrossRefGoogle Scholar
  30. Teixeira DA, Alfenas AC, Mafia RG, Ferreira EM, de Siqueira L, Maffia LA et al (2007) Rhizobacterial promotion of eucalypt rooting and growth. Braz J Microbiol 38:118–123. doi:10.1590/S1517-83822007000100025 CrossRefGoogle Scholar
  31. Uzabakiliho B, Largeau C, Casadevall E (1987) Latex constituents of Euphorbia candelabrum, Euphorbia grantii, Euphorbia tirucalli and Synadenium grantii. Phytochemistry 26:3041–3045. doi:10.1016/S0031-9422(00)84589-6 CrossRefGoogle Scholar
  32. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735. doi:10.1093/aob/mci083 CrossRefGoogle Scholar
  33. Yates DI, Earp BL, Levy F, Walker ES (2006) Propagation of Sciadopitys verticillata (Thunb.) Sieb. & Zucc. by stem cuttings and properties of its latex-like sap. HortScience 41:1662–1666Google Scholar
  34. Zahawi RA (2008) Instant trees: using giant vegetative stakes in tropical forest restoration. For Ecol Manag 255:3013–3016. doi:10.1016/j.foreco.2008.02.009 CrossRefGoogle Scholar
  35. Zahawi RA, Holl KD (2008) Comparing the performance of tree stakes and seedlings to restore abandoned tropical pastures. Restor Ecol. doi:10.1111/j.1526-100X.2008.00423.x Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Aklilu Negussie
    • 1
  • Raf Aerts
    • 2
  • Kindeya Gebrehiwot
    • 1
  • Els Prinsen
    • 3
  • Bart Muys
    • 2
  1. 1.Land Resources Management and Environmental Protection DepartmentMekelle UniversityMekelleEthiopia
  2. 2.Division Forest, Nature and LandscapeKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Department of BiologyUniversity of AntwerpAntwerpenBelgium

Personalised recommendations