Skip to main content
Log in

The effect of Tuber melanosporum Vitt. mycorrhization on growth, nutrition, and water relations of Quercus petraea Liebl., Quercus faginea Lamk., and Pinus halepensis Mill. seedlings

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Mycorrhizal and nonmycorrhizal Quercus faginea Lamk., Quercus petraea Liebl., and Pinus halepensis Mill. one-year-old seedlings inoculated with Tuber melanosporum Vitt. have been analyzed with the purpose of studying the influence of mycorrhization on their growth, water relations, and mineral nutrition. The mycorrhization improved Q. petraea and P. halepensis seedling growth. In addition, the mycorrhization created an elastic adjustment in P. halepensis, although it did not cause any osmotic adjustment. Additionally, the mycorrhization increased phosphorus uptake in Q. faginea and P. halepensis, content of all nutrients in P. halepensis, and N content in Q. petraea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol 112:55–60

    Article  CAS  Google Scholar 

  • Agerer R (1987–1998) Colour Atlas of Ectomycorrhizae Ed. Einhorn-Verlay (Munich)

  • Amaranthus MP, Perry D (1989) Rapid root tip and mycorrhiza formation and increased survival of Douglas-fir seedlings after soil transfer. New For 3:77–82

    Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal and non mycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42

    Article  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants V Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bjorkman E (1970) Mycorrhiza and tree nutrition in poor forest soils. Studia Forestalia Suecica 83:1–24

    Google Scholar 

  • Bowman WD, Roberts SW (1985) Seasonal changes in tissue elasticity in chaparral shrubs. Physiol Plant 65:233–236

    Article  Google Scholar 

  • Cheung YNS, Tyree MT, Dainty J (1975) Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations. Can J Bot 53:1342–1346

    Article  Google Scholar 

  • Coleman MD, Bledsoe CS, Smit BA (1990) Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol 115:275–284

    Article  CAS  Google Scholar 

  • Daniels Hetrick BA, Leslie JF, Thompson Wilson G, Gerschefske Kitt GD (1988) Physical and topological assessment of effects of a vesicular-arbuscular mycorrhizal fungus on root architecture of big bluestem. New Phytol 110:85–96

    Article  Google Scholar 

  • Davies FT, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration response in gas exchange and water relations. Physiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • Domínguez JA, RodrÍguez JA, Reyna S, Saíz de Omeñaca JA, Zazo J, Pérez R, Galiana F (2000) Mejora de la Nutrición Mineral en Planta Forestal Mediante Micorrización Controlada en Vivero VIII Simposio Nacional- IV Ibérico sobre Nutrición Mineral de las Plantas: Nutrición Mineral en una Agricultura Mediterránea Sostenible. Murcia, España

    Google Scholar 

  • Domínguez JA (2002) Aportaciones de la micorrización artificial con Tuber melanosporum Vitt en planta forestal Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Montes. Universidad Politécnica de Madrid

  • Domínguez JA, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manage 231:226–233

    Article  Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors involved in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    Article  CAS  Google Scholar 

  • Emadian SF, Newton RJ (1989) Growth enhancement of lobolly pine (Pinus taeda L.) seedlings with silicon. J Plant Physiol 134:98–103

    CAS  Google Scholar 

  • Fitter AH (1988) Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J Exp Bot 3:595–603

    Article  Google Scholar 

  • Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 192:261–268

    Article  CAS  Google Scholar 

  • Goicoechea N, Dolezal K, Antolin MC, Strnad M, Sánchez-Díaz M (1995) Influence of mycorrhizae and Rhizobium on cytokinin content in drought-stressed alfalfa. J Exp Bot 46:1543–1549

    Article  CAS  Google Scholar 

  • Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. C. A. B. International, Wallingford, pp 98–105

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Harvey AE, Larsen MJ, Jurgensen MF (1976) Distribution of ectomycorrhizae in a mature douglas-fir/larch soil in western Montana. For Sci 22:393–633

    Google Scholar 

  • Hausling M, Marschner H (1989) Organic and inorganic soil phosphates and soil phosphatase activity in the rhizosphere of 80-year-old norway spruce [Picea abies (L) Karst] trees. Biol Fertil Soils 8:128–133

    Article  Google Scholar 

  • Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Google Scholar 

  • Jones M, Turner NC, Osmond CB (1981) Mechanisms of drought resistance. In: Paleg L, Aspinall D (eds) Physiology and biochemistry of drought resistance in plants. Academic Press, New York, NY, pp 15–37

    Google Scholar 

  • Jones MM, Turner NC (1980) Osmotic adjustment in expanding and fully expanded leves of sunlower in response to water deficits. Aust J Plant Physiol 7:181–192

    Google Scholar 

  • Jongmans AG, van Breenan N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kahiluoto H, Vestberg M (1998) The effect of arbuscular mycorrhiza on biomass production and phosphorus uptake from sparingly soluble sources by leek (Allium porrum L.) in Finnish field soils. Biol Agric Horticult 16:65–85

    Google Scholar 

  • Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311

    Article  Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortin JA (1992) Hydraulic conductance and soil water potential at the soil-root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231–244

    PubMed  Google Scholar 

  • Landhäusser S, Muhsin T, Zwiazek J (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can J Bot 80:684–689

    Article  Google Scholar 

  • Meier CE, Newton RJ, Puryear JD, Sen S (1992) Physiological responses of lobolly pine (Pinus taeda L.) seedlings to drought stress: osmotic adjustment and tissue elasticity. J Plant Physiol 140:754–760

    CAS  Google Scholar 

  • Meyer RF, Boyer JS (1972) Sensitivity of cell division and cell elongation to low water potential in soybean hypocotyls. Planta 108:77–87

    Article  CAS  Google Scholar 

  • Miller RM, Hetrick BAD, Wilson GWT (1997) Mycorrhizal fungi affect root stele tissue in grasses. Can J Bot 75:1778–1784

    Google Scholar 

  • Mosse B (1959) Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte. Trans Br Mycol Soc 42:439–448

    Google Scholar 

  • Nardini A, Salleo S, Tyree M, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt on hydraulic conductance and water relations of Quercus ilex L seedlings. Ann For Sci 57:305–312

    Article  Google Scholar 

  • Newton RJ, Sen S, Puryear JD (1989) Solute contributions to osmotic potential in loblolly pine (Pinus taeda L.) callus. J Plant Physiol 134:746–750

    CAS  Google Scholar 

  • Nicholson TH (1959) Mycorrhiza in the Gramineae. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438

    Google Scholar 

  • Nylund JE (1988) The regulation of mycorrhiza formation-carbohydrate and hormone theories reviewed. Scand J For Res 3:465–479

    Google Scholar 

  • Querejeta JI, Roldan A, Albaladejo J, Castillo V (1998) The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid Mediterranean site with Pinus halepensis. For Sci 44:203–211

    Google Scholar 

  • Reddell P, Malajczuk N (1984) Formation of mycorrhizae by jarrah (Eucalyptus marginata Donn. ex Smith) in litter and soil. Aust J Bot 32:511–520

    Article  Google Scholar 

  • Reid CPP, Kidd FA, Ekwebelam SA (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant soil 71:415–432

    Article  CAS  Google Scholar 

  • Robichaux RH (1984) Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia (Berlin) 65:75–81

    Article  Google Scholar 

  • Rodríguez JA, Reyna S, Domínguez JA, Saíz de Omeñaca JA, Zazo J, Pérez R, Galiana F (1999) Producción de Plantas Micorrizadas de Calidad; Implantación, Mantenimiento y Mejora de Rodales Productores de Trufa y Otras Setas Reunión final de Coordinación del Programa de Investigación y desarrollo en relación con la restauración de la Cubierta Vegetal. CEAM (Fundación Centro de Estudios Ambientales del Mediterráneo), Castellón

    Google Scholar 

  • Rousseau JVD, Reid CPP (1989) Measurement of carbon cost in ectomycorrhiza. In: Torrey JG, Winship LJ (eds) Applications of continuous and steady-state methods to root biology

  • Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transport in soybean. Science 172:581–583

    Article  PubMed  Google Scholar 

  • Sagara N (1992) Experimental disturbances and epigeous fungi. In: Carol CC, Wicklow DT (eds) The fungal community, 2nd edn. Marcel Decker, New York, pp 427–454

    Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  Google Scholar 

  • Schweiger PFG (1994) Factors effecting VA mycorrhizal uptake of phosphorus. PhD Thesis, University of Western Australia, Perth

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, p 605

    Google Scholar 

  • Stark N (1972) Nutrient cycling pathways and litter fungi. Bioscience 22:355–360

    Article  CAS  Google Scholar 

  • St John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrient-absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493

    Article  Google Scholar 

  • Strullu DG, Harley JL, Gourret JP, Garrec JP (1983) A note on the relative phosphorus and calcium contents of metachromatic granules in Fagus mycorrhiza 94:89–94

  • Tarafdar JC, Marschner H (1994) Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600

    CAS  Google Scholar 

  • Tyree M, Jarvis PG (1982) Water in tissues and cells. In: Lange OL, Nobel PS, Osmond CB , Ziegler H (eds) Encyclopedia of plant physiology, new series, vol 12B, physiological plant ecology II. Springer-Verlag, Berlin, pp 36–77

    Google Scholar 

  • Tyree M, Hammel HT (1972) The measurement of the turgor pressure and the water relations of plants by the pressure technique. J Exp Bot 23:267–282

    Article  Google Scholar 

  • Warner A (1984) Colonization of organic matter by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 82:352–354

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the County of Valencia (FCEAM Mediterranean Environmental Research Center) and the County of Cantabria (Agriculture Council). The authors would also like to thank ETSI Montes, EUIT Forestal in Madrid, and INIA (National Institute of Agricultural Research) for their support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alfonso Domínguez Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez Núñez, J.A., Planelles González, R., Rodríguez Barreal, J.A. et al. The effect of Tuber melanosporum Vitt. mycorrhization on growth, nutrition, and water relations of Quercus petraea Liebl., Quercus faginea Lamk., and Pinus halepensis Mill. seedlings. New Forests 35, 159–171 (2008). https://doi.org/10.1007/s11056-007-9069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-007-9069-0

Keywords

Navigation