Skip to main content
Log in

Intranasal delivery of human Wharton’s jelly-derived mesenchymal stem cells alleviates Aβ-induced Alzheimer’s symptoms in rat models by regulating neurotrophic and apoptotic factors

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is the most common cause of dementia in adulthood, followed by cognitive and behavioral deficits. Today, mesenchymal stem cell (MSC)-based therapy is a suitable therapeutic option to improve regenerative medicine approaches against neurodegenerative disorders, including AD. This study aimed to investigate the effects of human Wharton’s jelly-derived MSCs (WJ-MSCs) on AD-like rat models (rats treated with amyloid beta 1-42 (Aβ1-42)) by evaluating the expression of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), as well as the expression of apoptotic factors such as B-cell lymphoma 2 (BCL2, an anti-apoptotic factor to inhibit apoptosis) and BCL2-associated X protein (BAX, a pro-apoptotic factor to regulate apoptosis). After treatment of AD rat models with WJ-MSCs, behavioral tests (i.e., passive avoidance and Morris water maze) showed cognitive improvements, and amelioration of cells in the CA1 area of the hippocampus was detected by cresyl violet staining. Additionally, real-time polymerase chain reaction (RT-PCR) of the hippocampus indicated an increase in the expression level of the BDNF, NGF, and BCL2 genes and a decrease in the expression level of the BAX gene. Overall, the WJ-MSCs improved the cognitive function in AD rat models by increasing the neurotrophic and anti-apoptotic factors and decreasing the pro-apoptotic factor.

Graphical Abstract

This graphical abstract depicts the process of isolating mesenchymal stem cells (MSCs) from human Wharton’s jelly (WJ) and their subsequent use in an Alzheimer’s disease (AD) rat model. The left side of the image illustrates the steps involved in isolating MSCs from WJ. The right side of the image shows how AD rat models are generated under stereotaxic injection of Aβ. In the middle, intranasally administration of MSCs is shown and then how their effects are evaluated using behavioral tests, nissl staining, and RT-qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmed, N. E.-M. B., Murakami, M., Hirose, Y., & Nakashima, M. (2016). Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: an in vitro study. Stem Cells International, 2016.

    Article  Google Scholar 

  • Aisen, P. S., Cummings, J., & Schneider, L. S. (2012). Symptomatic and nonamyloid/tau based pharmacologic treatment for Alzheimer disease. Cold Spring Harbor perspectives in medicine, 2(3), a006395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alipour, M., Nabavi, S. M., Arab, L., Vosough, M., Pakdaman, H., Ehsani, E., & Shahpasand, K. (2019). Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Molecular biology reports, 46(1), 1425-1446.

    Article  CAS  PubMed  Google Scholar 

  • Azman, K. F., & Zakaria, R. (2022). Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci, 23(12). https://doi.org/10.3390/ijms23126827

  • Balashova, A., Pershin, V., Zaborskaya, O., Tkachenko, N., Mironov, A., Guryev, E., … Mukhina, I. (2019). Enzymatic digestion of hyaluronan-based brain extracellular matrix in vivo can induce seizures in neonatal mice. Frontiers in neuroscience, 13, 1033.

  • Barati, E., Asl, S. S., Jamshidian, M., & Shahidi, S. (2016). Effect of Borage on hipocampal TNF-α protein and gene in the Amyloid β-Peptide (25–35)-Induced of Alzheimer model in rat. Biosciences Biotechnology Research Asia, 13(1), 37-42.

    Article  Google Scholar 

  • Beigi Boroujeni, F., Pasbakhsh, P., Mortezaee, K., Pirhajati, V., Alizadeh, R., Aryanpour, R., … Ragerdi Kashani, I. (2020). Intranasal delivery of SDF‐1α‐preconditioned bone marrow mesenchymal cells improves remyelination in the cuprizone‐induced mouse model of multiple sclerosis. Cell biology international, 44(2), 499-511.

  • Blondiaux, A., Jia, S., Annamneedi, A., Çalışkan, G., Nebel, J., Montenegro-Venegas, C., … Stork, O. (2023). Linking epileptic phenotypes and neural extracellular matrix remodeling signatures in mouse models of epilepsy. Neurobiology of disease, 188, 106324.

  • Blurton-Jones, M., Kitazawa, M., Martinez-Coria, H., Castello, N. A., Müller, F.-J., Loring, J. F., … LaFerla, F. M. (2009). Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences, 106(32), 13594-13599.

  • Chen, S.-D., Wu, C.-L., Hwang, W.-C., & Yang, D.-I. (2017). More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. International journal of molecular sciences, 18(3), 545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, J. M., Park, H. S., He, M. T., Kim, Y. S., Kim, H. Y., Lee, A. Y., & Cho, E. J. (2022). Membrane-Free Stem Cells and Pyridoxal 5′-Phosphate Synergistically Enhance Cognitive Function in Alzheimer’s Disease Mouse Model. Antioxidants, 11(3), 601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Buadze, M., Geisler, J., Klopfer, T., … Ayturan, M. (2009). Intranasal delivery of cells to the brain. European journal of cell biology, 88(6), 315-324.

  • Donders, R., Bogie, J. F., Ravanidis, S., Gervois, P., Vanheusden, M., Marée, R., … Gijbels, K. (2018). Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem cells and development, 27(2), 65-84.

  • Dragunow, Μ., MacGibbon, G., Lawlor, P., Butterworth, N., Connor, B., Henderson, C., … Faull, R. (1997). Apoptosis, neurotrophic factors and neurodegeneration. Reviews in the Neurosciences, 8(3-4), 223-265.

  • Faghani, M., Ejlali, F., Sharifi, Z. N., Molladoost, H., & Movassaghi, S. (2016). The Neuroprotective Effect of Atorvastatin on Apoptosis of Hippocampus Following Transient Global Ischemia/Reperfusion. Galen Medical Journal, 5(2), 82-89.

    Google Scholar 

  • Girotra, P., Behl, T., Sehgal, A., Singh, S., & Bungau, S. (2022). Investigation of the molecular Role of brain-derived neurotrophic factor in Alzheimer’s disease. Journal of Molecular Neuroscience, 72(2), 173-186.

    Article  CAS  PubMed  Google Scholar 

  • Hour, F. Q., Moghadam, A. J., Shakeri-Zadeh, A., Bakhtiyari, M., Shabani, R., & Mehdizadeh, M. (2020). Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton's jelly in Alzheimer's rat models. Journal of Controlled Release.

  • Hsieh, J.-Y., Wang, H.-W., Chang, S.-J., Liao, K.-H., Lee, I.-H., Lin, W.-S., … Cheng, S.-M. (2013). Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PloS one, 8(8).

  • Jahanshahi, M., Shabani, R., Nikmahzar, E., & Babakordi, F. (2014). Female rat hippocampal cell density after conditioned place preference. Folia Biologica (Czech Republic), 60(1), 47-51.

    CAS  Google Scholar 

  • Jiao, S., Shen, L., Zhu, C., Bu, X., Liu, Y., Liu, C., … Walker, D. (2016). Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Translational psychiatry, 6(10), e907-e907.

  • Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J. A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative medicine, 5(6), 933-946.

    Article  PubMed  Google Scholar 

  • Jung, H. (2020). Hyaluronidase: An overview of its properties, applications, and side effects. Archives of plastic surgery, 47(04), 297-300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Mesenchymal stromal cells: biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis research & therapy, 9(1), 204.

    Article  Google Scholar 

  • Lee, I.-S., Jung, K., Kim, I.-S., Lee, H., Kim, M., Yun, S., … Park, K. I. (2015). Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Molecular neurodegeneration, 10(1), 38.

  • Lee, N. K., Park, S. E., Kwon, S. J., Shim, S., Byeon, Y., Kim, J.-H., … Chang, J. W. (2017). Agouti related peptide secreted via human mesenchymal stem cells upregulates proteasome activity in an Alzheimer’s disease model. Scientific reports, 7(1), 1-9.

  • Lo Furno, D., Mannino, G., & Giuffrida, R. (2018). Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. Journal of cellular physiology, 233(5), 3982-3999.

    Article  CAS  PubMed  Google Scholar 

  • Madadi, S., & Mehdizaded, M. (2014). Alzheimer diseases. Avicenna Journal of Neuro Psych Physiology, 1(2).

  • Mattson, M. P. (2000). Apoptosis in neurodegenerative disorders. Nature reviews Molecular cell biology, 1(2), 120-130.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in neurosciences, 27(10), 589-594.

    Article  CAS  PubMed  Google Scholar 

  • Mehdizadeh, M., Dabaghian, F. H., Shojaee, A., Molavi, N., Taslimi, Z., Shabani, R., & Asl, S. S. (2017). Protective effects of cyperus rotundus extract on amyloid β-peptide (1-40)-induced memory impairment in male rats: a behavioral study. Basic and clinical neuroscience, 8(3), 249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Naranjo, A., Contreras-Vallejos, E., Henriquez, D. R., Otth, C., Bamburg, J. R., Maccioni, R. B., & Gonzalez-Billault, C. (2012). Fibrillar amyloid-β 1-42 modifies actin organization affecting the cofilin phosphorylation state: a role for Rac1/cdc42 effector proteins and the slingshot phosphatase. Journal of Alzheimer's disease, 29(1), 63-77.

    Article  CAS  PubMed  Google Scholar 

  • Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods, 11(1), 47-60.

    Article  CAS  PubMed  Google Scholar 

  • Morris, R. G., Garrud, P., Rawlins, J. a., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.

    Article  CAS  PubMed  Google Scholar 

  • Mungmunpuntipantip, R., & Wiwanitkit, V. (2022). Brain-derived neurotrophic factor and its clinical applications. Medical Journal of Dr. DY Patil University, 15(5), 619-628.

    Google Scholar 

  • Pang, S., Li, S., Cheng, H., Luo, Z., Qi, X., Guan, F., … Gao, X. (2023). Discovery of an evodiamine derivative for PI3K/AKT/GSK3β pathway activation and AD pathology improvement in mouse models. Frontiers in Molecular Neuroscience, 15, 1025066.

  • Park, S. E., Lee, N. K., Na, D. L., Chang, J. W., & Chang, J. W. (2018). Optimal mesenchymal stem cell delivery routes to enhance neurogenesis for the treatment of Alzheimer’s disease. Histology and histopathology: cellular and molecular biology, 33(6), 533-541.

    CAS  PubMed  Google Scholar 

  • Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P. A., … Levine, B. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. The Journal of clinical investigation, 118(6), 2190-2199.

  • Qin, C., Bai, L., Li, Y., & Wang, K. (2022a). The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer’s disease: crosstalk between autophagy and apoptosis. Stem cell research & therapy, 13(1), 1-13.

    Article  Google Scholar 

  • Qin, C., Wang, K., Zhang, L., & Bai, L. (2022b). Stem cell therapy for Alzheimer’s disease: An overview of experimental models and reality. Animal models and experimental medicine, 5(1), 15-26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiyami Hour, F., Shabani, R., Ashtrai, B., Moinzadeh, A., & Mehdizadeh, M. Labelling of human Wharton's jelly‐derived mesenchymal stem cells with gold nanorods by biomimicry method. Cell Biochemistry and Function.

  • Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer's disease, 42(s3), S125-S152.

    Article  PubMed  Google Scholar 

  • Ranjbaran, H., Abediankenari, S., Mohammadi, M., Jafari, N., Khalilian, A., Rahmani, Z., … Ebrahimi, P. (2018). Wharton's jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Medica Iranica, 28-33.

  • Ribeiro, C. A., Fraga, J. S., Grãos, M., Neves, N. M., Reis, R. L., Gimble, J. M., … Salgado, A. J. (2012). The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem cell research & therapy, 3(3), 18.

  • Salehi, M. S., Jurek, B., Karimi-Haghighi, S., Nezhad, N. J., Mousavi, S. M., Hooshmandi, E., … Miyan, J. A. (2022). Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Reviews in the Neurosciences.

  • Sampaio, T. B., Savall, A. S., Gutierrez, M. E. Z., & Pinton, S. (2017). Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural regeneration research, 12(4), 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaabani, R., Jahanshahi, M., Nowrouzian, M., Sadeghi, Y., & Azami, N. (2011). Effect of morphine based CPP on the hippocampal astrocytes of male Wistar rats. Asian Journal of Cell Biology, 6(3), 89-96.

    Article  CAS  Google Scholar 

  • Shahror, R. A., Wu, C.-C., Chiang, Y.-H., & Chen, K.-Y. (2019). Tracking Superparamagnetic Iron Oxide-labeled Mesenchymal Stem Cells using MRI after Intranasal Delivery in a Traumatic Brain Injury Murine Model. JoVE (Journal of Visualized Experiments)(153), e60450.

  • Sharma, V. K., Singh, T. G., Singh, S., Garg, N., & Dhiman, S. (2021). Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochemical Research, 46(12), 3103-3122.

    Article  CAS  PubMed  Google Scholar 

  • Simorgh, S., Alizadeh, R., Shabani, R., Karimzadeh, F., Seidkhani, E., Majidpoor, J., … Kasbiyan, H. (2021a). Olfactory mucosa stem cells delivery via nasal route: a simple way for the treatment of Parkinson disease. Neurotoxicity Research, 39(3), 598-608.

  • Simorgh, S., Bagher, Z., Farhadi, M., Kamrava, S. K., Boroujeni, M. E., Namjoo, Z., … Alizadeh, R. (2021b). Magnetic targeting of human olfactory mucosa stem cells following intranasal administration: a novel approach to Parkinson’s disease treatment. Molecular Neurobiology, 58, 3835-3847.

  • Tamtaji, O. R., Hosseinzadeh, H., Talaei, S. A., Behnam, M., Firoozeh, S. M. T., Taghizadeh, M., & Alipoor, R. (2017). Protective Effects of Red Onion (Allium cepa) Ethanolic Extract on Learning and Memory Impairments in Animal Models of Diabetes. Galen Medical Journal, 6(3), 249-257.

    Article  Google Scholar 

  • Tang, Y., Han, L., Bai, X., Liang, X., Zhao, J., Huang, F., & Wang, J. (2020). Intranasal Delivery of Bone Marrow Stromal Cells Preconditioned with Fasudil to Treat a Mouse Model of Parkinson’s Disease. Neuropsychiatric Disease and Treatment, 16, 249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira, F. G., Carvalho, M. M., Sousa, N., & Salgado, A. J. (2013). Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cellular and Molecular Life Sciences, 70(20), 3871-3882.

    Article  CAS  PubMed  Google Scholar 

  • Tuszynski, M. H., Thal, L., Pay, M., Salmon, D. P., Bakay, R., Patel, P., … . Tong, G. (2005). A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature medicine, 11(5), 551-555.

  • Vafaee, F., Zarifkar, A., Emamghoreishi, M., Namavar, M. R., Shahpari, M., & Zarifkar, A. H. (2018). Effect of Recombinant Insulin-like Growth Factor-2 Injected into the Hippocampus on Memory Impairment Following Hippocampal Intracerebral Hemorrhage in Rats. Galen Medical Journal, 7, 1353.

    Article  Google Scholar 

  • van Rijzingen, I. M., Gispen, W. H., & Spruijt, B. M. (1995). Olfactory bulbectomy temporarily impairs Morris maze performance: an ACTH (4–9) analog accellerates return of function. Physiology & behavior, 58(1), 147-152.

    Article  Google Scholar 

  • Wozniak, D. F., Hartman, R. E., Boyle, M. P., Vogt, S. K., Brooks, A. R., Tenkova, T., … Muglia, L. J. (2004). Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiology of disease, 17(3), 403-414.

  • Wu, C.-C., Lien, C.-C., Hou, W.-H., Chiang, P.-M., & Tsai, K.-J. (2016). Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Scientific reports, 6(1), 27358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., Sasaki, A., Yoshimoto, R., Kawahara, Y., Manabe, T., Kataoka, K., … Yuge, L. (2008). Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology, 75(3), 186-194.

  • Yang, H., Liu, Y., Liu, X., Gu, H., Zhang, J., & Sun, C. (2020). Concise Review: The Regulatory Mechanism of Lysine Acetylation in Mesenchymal Stem Cell Differentiation. Stem Cells International, 2020.

  • Yu-Taeger, L., Stricker-Shaver, J., Arnold, K., Bambynek-Dziuk, P., Novati, A., Singer, E., … Riess, O. (2019). Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells, 8(6), 595.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Cellular and Molecular Research Center (CMRC) of IUMS (94-05-117-27524) and the Iran National Science Foundation (INSF) for funding this work through a grant (95849005). Experiments were performed at the Cellular and Molecular Research Center (CMRC) and IUMS Core Laboratory (ICL), Tehran, Iran.

Funding

This work was supported by grants from Iran University of Medical Sciences (IUMS) (97-4-75-13504) and Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, and Investigation [Ebrahim Eslami, Farshid Ghiyamihoor, Marjan Sadr, Marziyeh Ajdary, Sahar Hakimpour, Rana Mehdizadeh, Ronak Shabani, Mehdi Mehdizadeh]; Writing – original draft preparation [Farshid Ghiyamihoor]; Writing – Review and Editing [Ebrahim Eslami, Farshid Ghiyamihoor, Marjan Sadr, Marziyeh Ajdary, Sahar Hakimpour, Rana Mehdizadeh, Ronak Shabani, Mehdi Mehdizadeh]; Funding Acquisition and Resources [Mehdi Mehdizadeh]; Supervision, [Mehdi Mehdizadeh and Ronak Shabani]

Corresponding authors

Correspondence to Ronak Shabani or Mehdi Mehdizadeh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Ethics Statement

All procedures performed in this study were in accordance with the ethical standards of the institutional research ethics committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All procedures performed on animals were in accordance with the ethical standards of the IUMS (IR.iums.rec.1397.1299).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

The authors affirm that human research participants provided informed consent for publication of data in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 446 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, E., Ghiyamihoor, F., Sadr, M. et al. Intranasal delivery of human Wharton’s jelly-derived mesenchymal stem cells alleviates Aβ-induced Alzheimer’s symptoms in rat models by regulating neurotrophic and apoptotic factors. Neurosci Behav Physi (2024). https://doi.org/10.1007/s11055-024-01582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11055-024-01582-1

Keywords

Navigation