Skip to main content

Advertisement

Log in

Calciopathies and Neuropsychiatric Disorders: Physiological and Genetic Aspects

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Calcium is a key and universal second messenger and an effective regulator of metabolic processes. Calciopathies are derangements in the utilization of calcium within cells due to dysfunction of ion channel subunits and/or the proteins regulating them, and include abnormalities in the functioning of regulatory pathways and mitochondria and their concomitant neuropsychiatric diseases. Identification of genes associated with calcium metabolism and studying the role of changes in their functioning in determining these conditions are important in seeking new molecular targets for targeted pharmacotherapy of mental disorders and concomitant diseases and for preventing them. This review addresses physiological and genetic disorders in the regulation of calcium homeostasis and their relationships with psychoneuropathologies of various origins; known and promising therapeutic approaches to their treatment based on the actions on calcium-related metabolic processes and the activity of calcium response genes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. B. Bezprozvannyi, “The calcium signaling system in neurodegeneration,” Acta Naturae (Russian version), 2, 80–88 (2010).

    Google Scholar 

  2. I. B. Zavodnik, “Mitochondria, calcium homeostasis, and calcium signaling,” Biomed. Khim., 62, No. 3, 311–317 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. V. P. Zinchenko and L. P. Dolgacheva, Intracellular Signaling, Pushchino (2003).

  4. V. A. Zuev, “Immunological theory of the pathogenesis of Alzheimer’s disease: facts and hypotheses,” Sovrem. Prob. Nauki Obraz., No. 4. (2019).

  5. I. V. Litvinenko, I. V. Krasakov, G. N. Bisaga, et al., “ The modern concept of the pathogenesis of neurodegenerative diseases and therapeutic strategies,” Zh. Nevrol. Psikhiat., 6, No. 2, 3–10 (2017).

    Article  Google Scholar 

  6. K. N. Mel’nikov, “Diversity and properties of calcium channels in excitable membranes,” Psikhofarmakol. Biol. Narkol., 6, No. 1–2, 1139–1155 (2006).

  7. J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs, From Neuron to Brain [Russian translation], LIBROKOM Press, Moscow (2017), 4th ed.

  8. N. V. Solov’eva, S. V. Chausova, I. V. Kichuk, and E. V. Makarova, “Influence of calcium signaling on the development of autism spectrum disorders,” Patolog. Fiziol. Eksperim. Ter., 64, No. 4, 106–117 (2020).

  9. O. Yu. Fedorenko and S. A. Ivanova, “A new look at the genetics of neurocognitive deficit in schizophrenia,” Zh. Nevrol. Psikhiatr., 120, No. 8, 183–192 (2020).

    Google Scholar 

  10. V. I. Tsirkin and E. N. Sizova, “ Ca-channels controlled by the calcium depot (literature review),” Usp. Fiziol. Nauk., 51, No. 2, 37–54 (2020).

    Google Scholar 

  11. R. Abeti and A. Y. Abramov, “Mitochondrial Ca2+ in neurodegenerative disorders,” Pharmacol. Res., 99, 377–381 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Alzheimer’s Association Calcium Hypothesis Workgroup, “Calcium hypothesis of Alzheimer’s disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis,” Alzheimers Dement., 13, 178–182 e117 (2017).

  13. American Psychiatric Association, DSM-5. Diagnostic and Statistical Manual of Mental Disorders, Washington DC (2013), https://doi.org/10.1176/appi.books.9780890425596.744053.

  14. A. Andrade, A. Brennecke, S. Mallat, et al., “Genetic associations between voltage-gated calcium channels and psychiatric disorders,” Int. J. Mol. Sci., 20, 3537 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Aoki and S. Cortese, “Mitochondrial aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: a meta-analysis,” Mol. Neurobiol., 53, 1579–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. N. Arispe, J. C. Diaz, and O. Simakova, “Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers,” Biochim. Biophys. Acta, 1768, 1952–1965 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. N. Arispe, E. Rojas, and H. B. Pollard, “Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum,” Proc. Natl. Acad. Sci. USA, 90, No. 2, 567–571 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Barbado, K. Fablet, M. Ronjat, and M. De Waard, “Gene regulation by voltage-dependent calcium channels,” Biochim. Biophys. Acta, 1793, 1096–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. C. F. Barrett and R. W. Tsien, “The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels,” Proc. Natl. Acad. Sci. USA, 105, 2157–2162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E. E. Benarroch, “Neuropeptide Y: its multiple effects in the CNS and potential clinical significance,” Neurology, 72, 1016–1020 (2009).

    Article  PubMed  Google Scholar 

  21. S. M. Berger and D. Bartsch, “The role of L-type voltage gated calcium channels Cav 1.2 and Cav 1.3 in normal and pathological brain function,” Cell Tissue Res., 357, No. 2, 463–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. B. A. Bergmans and B. De Strooper, “Gamma-secretases: from cell biology to therapeutic strategies,” Lancet Neurol., 9, 215–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. M. J. Berridge, “Calcium signalling and Alzheimer’s disease,” Neurochem. Res., 36, 1149–1156 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. M. J. Berridge, M. D. Bootman, and H. L. Roderick, “Calcium: Calcium signalling: dynamics, homeostasis and remodelling,” Nat. Rev. Mol. Cell Biol., 4, No. 7, 517–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. M. J. Berridge, “Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia,” Prion, No. 1, 2–13 (2013).

    Article  Google Scholar 

  26. M. J. Berridge, “Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia,” Cell. Tiss. Res., 357, No. 2, 477–492 (2014).

    Article  CAS  Google Scholar 

  27. I. Bezprozvanny and M. R. Hayden, “Deranged neuronal calcium signaling and Huntington disease,” Biochem. Biophys. Res. Commun, 322, No. 4, 1310–1317 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. I. Bezprozvanny and P. R. Hiesinger, “The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration,” Mol. Neurodegener., 8, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. Bezprozvanny and M. P. Mattson, “Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease,” Trends Neurosci., 31, No. 9, 454–463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Bhandari, J. K. Paliwal, and A. Kuhad, “Neuropsychopathology of autism spectrum disorder: Complex interplay of genetic, epigenetic, and environmental factors,” Adv. Neurobiol., 24, 97–141 (2020), https://doi.org/https://doi.org/10.1007/978-3-030-30402-7_432006358.

    Article  PubMed  Google Scholar 

  31. G. S. Bloom, “Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis,” JAMA Neurol., 71, 505–508 (2014).

    Article  PubMed  Google Scholar 

  32. L. Bojarski, P. Pomorski, A. Szybinska, et al., “Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer’s disease,” Biochim. Biophys. Acta, 1793, 1050–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. M. D. Bootman, T. J. Collins, C. M. Peppiatt, et al., “Calcium signaling – an overview,” Sem Cell. Dev. Biol., 12, No. 1, 3–10 (2001).

    Article  CAS  Google Scholar 

  34. A. F. S. Breitenkamp, J. Matthes, R. D. Nass, et al., “Rare mutations of CACNB2 found in autism spectrum disease – Affected families alter calcium channel function,” PLoS One, 9, e95579 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. C. A. Briggs, S. Chakroborty, and G. E. Stutzmann, “Emerging pathways driving early synaptic pathology in Alzheimer’s disease,” Biochem. Biophys. Res. Commun., 483, No. 4, 988–997 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. M. Brini, T. Calì, D. Ottolini, and E. Carafoli, “Neuronal calcium signaling: function and dysfunction,” Cell. Mol. Life Sci., 71, No. 15, 2787–2814 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. K. E. Burdick, M. Perez-Rodriguez, R. Birnbaum, et al., “A molecular approach to treating cognition in schizophrenia by calcium channel blockade: An open-label pilot study of the calcium-channel antagonist isradipine,” Schizophr. Res. Cogn., 21, 100180 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. M. Calvo-Rodriguez, E. K. Kharitonova, and B. J. Bacskai, “Therapeutic strategies to target calcium dysregulation in Alzheimer’s disease,” Cells, 9, No. 11, 2513 (2020).

    Google Scholar 

  39. W. A. Catterall, M. J. Lenaeus, and T. M. Gamal El-Din, “Structure and pharmacology of voltage-gated sodium and calcium channels review,” Annu. Rev. Pharmacol. Toxicol., 60, 133–154 (2020).

  40. S. Chakroborty and G. E. Stutzmann, “Calcium channelopathies and Alzheimer’s disease: Insight into therapeutic success and failures,” Eur. J. Pharmacol., 739, 83–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. M. Chami, “Calcium signalling in Alzheimer’s disease: From pathophysiological regulation to therapeutic approaches,” Cells, 10, No. 1, 140 (2021).

    Google Scholar 

  42. K. T. Cheng, H. L. Ong, X. Liu, and I. S. Ambudkar, “Contribution and regulation of TRPC channels in store-operated Ca2+ entry,” Curr. Top. Membr., 71, 149–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. D. Chin and A. R. Means, “Calmodulin: a prototypical calcium sensor,” Trends Cell Biol., 10, No. 8, 322–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. A. Cipriani, K. Saunders, M.-J. Attenburrow, et al., “A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development,” Mol. Psychiatry, 21, No. 10, 1324–1332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. E. Clapham, “Calcium Signaling,” Cell, 131, No. 6, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. L. Colbourne, S. Luciano, and P. J. Harrison, “Onset and recurrence of psychiatric disorders associated with anti-hypertensive drug classes,” Transl. Psychiatry, 11, No. 1, 319 (2021).

  47. J. Cortés-Mendoza, S. D. de León-Guerrero, G. Pedraza-Alva, and L. Pérez-Martínez, “Shaping synaptic plasticity: the role of activity mediated epigenetic regulation on gene transcription,” Int. J. Dev. Neurosci., 31, No. 6, 359–69 (2013).

    Article  PubMed  Google Scholar 

  48. J. Cummings, P. S. Aisen, et al., “Drug development in Alzheimer’s disease: the path to 2025,” Alzheimers Res. Ther., 8, 39 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. K. Czarnecka, J. Chuchmacz, P. Wójtowicz, and P. Szymański, “Memantine in neurological disorders – schizophrenia and depression,” J. Mol. Med. (Berl.), 99, No. 3, 327–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. M. Czeredys, “Dysregulation of neuronal calcium signaling via store-operated channels in Huntington’s disease,” Front. Cell Dev. Biol., 8, 611735 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. P. R. Da Silva, T. K. S. do Nascimento Gonzaga, et al., “Ionic channels as potential targets for the treatment of autism spectrum disorder: A review,” Curr. Neuropharmacol., 20, No. 10, 1834–1849 (2022), https://doi.org/10.2174/1570159X19666210809102547.

  52. D. Dabkeviciene, S. Jarmalaite, and G. A. Bulotiene, “Systematic review of candidate genes for major depression,” Medicina (Kaunas), 58, No. 2, 285 (2022).

    Google Scholar 

  53. P. Davies and A. J. Maloney, “Selective loss of central cholinergic neurons in Alzheimer’s disease,” Lancet, 308, No. 8000: 1403 (1976), https://doi.org/https://doi.org/10.1016/S0140-6736 (76)91936-X PMID: 63862.

    Article  Google Scholar 

  54. M. Decressac and R. A. Barker, “Neuropeptide Y and its role in CNS disease and repair,” Exp. Neurol., 238, 265–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. R. Donev and K. Alawam, “Alterations in gene expression in depression: Prospects for personalize patient treatment,” Adv. Protein Chem. Struct. Biol., 101, 97–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. G. Dong, K. Gross, F. Qiao, et al., “Calretinin interacts with huntingtin and reduces mutant huntingtin-caused cytotoxicity,” J. Neurochem., 123, No. 3, 437–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. S. L. Dubovsky and D. Marshall, “Calcium channel antagonists for mood disorders,” J. Clin. Psychopharmacol., 42, No. 2, 188–197 (2022).

    Article  PubMed  Google Scholar 

  58. N. L. Dudek, Y. Dai, and N. A. Muma, “Neuroprotective effects of calmodulin peptide 76-121aa: disruption of calmodulin binding to mutant huntingtin,” Brain Pathol., 20, 176–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. N. L. Dudek, Y. Dai, and N. A. Muma, “Protective effects of interrupting the binding of calmodulin to mutant huntingtin,” J. Neuropathol. Exp. Neurol., 67, 355–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. R. S. Duman and B. Voleti, “Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents,” Trends Neurosci., 35, No.1, 47–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. P. A. Egorova, A. V. Gavrilova, and I. B. Bezprozvanny, “Ataxic symptoms in Huntington’s disease transgenic mouse model are alleviated by chlorzoxazone,” Front. Neurosci., 14, 279 (2020).

    Article  PubMed Central  Google Scholar 

  62. R. Fairless, S. K. Williams, and R. Diem, “Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration,” Cell Tissue Res., 357, 455–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. T. Fan, Y. Hu, J. Xin, et al., “Analyzing the genes and pathways related to major depressive disorder via a systems biology approach,” Brain Behav., 10, e01502 (2020).

    Article  PubMed  Google Scholar 

  64. M. A. Ferreira, M. C. O’Donovan, Y. A. Meng, et al., “Collaborative genome-wide association analysis of 10,596 individuals supports a role for ankyrin-G (ANK3) and the alpha-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder,” Nat. Genet., 40, 1056–1058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. L. Ferron, S. Koshti, and G. W. Zamponi, “The life cycle of voltage- gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels,” Neuronal Signal., 5, No. 1: NS20200095 (2021).

  66. C. F. Fletcher, C. M. Lutz, T. N. O’sullivan, et al., “Absence epilepsy in tottering mutant mice is associated with calcium channel defects,” Cell, 87, 607–617 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. M. Fromer, A. J. Pocklington, D. H. Kavanagh, et al., “De novo mutations in schizophrenia implicate synaptic networks,” Nature, 506, No. 7487, 179–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J. J. Gargus, “Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism,” Ann. NY Acad. Sci., 1151, 133–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. M. Giacomello, J. Oliveros, J. Naranjo, and E. Carafoli, “Neuronal Ca2+ dyshomeostasis in Huntington disease,” Prion, 7, No. 1, 76–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. G. Glenner and C. Wong, “Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein,” Biochem. Biophys. Res. Com., 120, No. 3, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  71. M. L. Hamshere, J. T. Walters, R. Smith, et al., “Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC,” Mol. Psychiatry, 18, No. 6, 708–712 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. M. G. Hanna, N. W. Wood, and D. M. Kullmann, “Ion channels and neurological disease: DNA based diagnosis is now possible, and ion channels may be important in common paroxysmal disorders,” J. Neurol. Neurosurg. Psychiatry, 65, 427–431 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. J. Hardy and D. Allsop, “Amyloid deposition as the central event in the aetiology of Alzheimer’s disease,” Trends Pharmacol. Sci., 12, 383–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. J. Hardy, and D. J. Selkoe, “The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics,” Science, 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. P. J. Harrison, E. M. Tunbridge, A. C. Dolphin, and J. Hall, “Voltagegated calcium channel blockers for psychiatric disorders: genomic reappraisal,” Br. J. Psychiatry, 216, 250–253 (2020).

    Article  PubMed  Google Scholar 

  76. Z. He, J. L. Guo, J. D. McBride, et al., “Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation,” Nat. Med., 24, 29–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. J. Heck, A. C. Palmeira Do Amaral, S. Weißbach, et al., “More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation,” Channels (Austin), 15, No. 1, 322–338 (2021).

  78. K. Iqbal, C. Alonso Adel, S. Chen, et al., “Tau pathology in Alzheimer disease and other tauopathies,” Biochim. Biophys. Acta, 1739, No. 2–3, 198–210 (2005), PMID: 15615638, https://doi.org/10.1016/j.bbadis.2004.09.008.

  79. K. Jaskova, M. Pavlovicova, and D. Jurkovicova, “Calcium transporters and their role in the development of neuronal disease and neuronal damage,” Gen. Physiol. Biophys., 31, No. 4, 375–382 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. J. Jiang, Z. Wang, Y. Dong, et al., “A statistical analysis plan for a randomized clinical trial to evaluate the efficacy and safety of ethosuximide in patients with treatment-resistant depression,” Medicine (Baltimore), 98, No. 31, e16674 (2019).

    Google Scholar 

  81. C. Johannessen Landmark, G. Beiske, A. Baftiu, et al., “Experience from therapeutic drug monitoring and gender aspects of gabapentin and pregabalin in clinical practice,” Seizure, 28, 88–91 (2015).

  82. A. Jurcau, “Molecular pathophysiological mechanisms in Huntington’s disease,” Biomedicines, 10, 1432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Z. D. Kabir, A. S. Lee, C. E. Burgdorf, et al., “Cacna1c in the prefrontal cortex regulates depression-related behaviors via REDD1,” Neuropsychopharmacology, 4, No. 10, 2032–42 (2017).

    Article  Google Scholar 

  84. L. S. Kaltenbach, et al., “Huntingtin interacting proteins are genetic modifiers of neurodegeneration,” PLoS Genet., 3 e82 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. E. Karran and J. Hardy, “A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease,” Ann. Neurol., 76, 185–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. E. Karran, M. Mercken, and B. De Strooper, “The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics,” Nat. Rev. Drug Discov., 10, 698–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. K. Karttunen, P. Karppi, A. Hiltunen, et al., “Neuropsychiatric symptoms and quality of life in patients with very mild and mild Alzheimer’s disease,” Int. J. Geriatr. Psychiatry, 26, No. 5, 473–482 (2011).

    Article  PubMed  Google Scholar 

  88. Z. S. Khachaturian, “Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview,” Ann. NY Acad. Sci., 568, 1–4 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. J. S. Kim, Q. Yue, J. C. Jen, et al., “Familial migraine with vertigo: no mutations found in CACNA1A,” Am. J. Med. Genet., 79, No. 2, 148–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. S. K. Kirchner, S. Ozkan, R. Musil, et al., “Polygenic analysis suggests the involvement of calcium signaling in executive function in schizophrenia patients,” Eur. Arch. Psychiatry Clin. Neurosci., 270, No. 4, 425–431 (2018).

    Article  PubMed  Google Scholar 

  91. G. Kirov, A. J. Pocklington, P. Holmans, et al., “De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia,” Mol. Psychiatry, 17, 142–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. D. K. V. Kumar, S. H. Choi, K. J. Washicosky, et al., “Amyloidpeptide protects against microbial infection in mouse and worm models of Alzheimers disease,” Sci. Transl. Med., 8, 340ra72 (2016).

  93. M. C. Lai, M. V. Lombardo, and S. Baron-Cohen, “Autism,” Lancet, 383, 896–910 (2014).

    Article  PubMed  Google Scholar 

  94. S. H. Lee, S. Ripke, B. M. Neale, et al., “Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis,” Lancet, 381, No. 9875, 1371–1379 (2013).

    Article  Google Scholar 

  95. H. Lerche, N. Mitrovic, and F. Lehmann-Hom, “Ion channel diseases in neurology,” Fortschr. Neurol. Psychiatry, 65, No. 11, 481–488 (1997).

    Article  CAS  Google Scholar 

  96. Z. Li, M. Ruan, J. Chen, and Y. Fang, “Major depressive disorder: advances in neuroscience research and translational applications,” Neurosci. Bull., 37, No. 6, 863–880 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. X. Liao and Y. Li, “Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review,” Mol. Brain, 13, No. 1, 96 (2020).

  98. D. Lipscombe and A. Andrade, “Calcium channel CaVα1 splice isoforms – tissue specificity and drug action,” Curr. Mol. Pharmacol., 8, No. 1, 22–31 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. J. Liu, A. Yang, Q. Zhang, et al., “Association between genetic variants in SLC25A12 and risk of autism spectrum disorders: An integrated metaanalysis,” Am. J. Med. Genet. B. Neuropsychiatr. Genet., 168b, 236–46 (2015).

  100. J. Liu, W. Mo, Z. Zhang, et al., “Single nucleotide polymorphisms in SLC19A1 and SLC25A9 are associated with childhood autism spectrum disorder in the Chinese Han population,” J. Mol. Neurosci., 62, 262–267 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. A. A. Loch, “Schizophrenia, not a psychotic disorder: Bleuler revisited,” Front. Psychiatry, 10, 328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. N. M. Lorenzon and K. G. Beam, “Calcium channelopathies,” Kidney International, 57, No. 3, 794–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. P. Lory, S. Nicole, and A. Monteil, “Neuronal Cav3 channelopathies: recent progress and perspectives,” Pflugers Arch., 472, No. 7, 831–844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. M. E. MacDonald, C. M. Ambrose, M. P. Duyao, et al., “A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group,” Cell, 72, 971–983 (1993).

    Article  Google Scholar 

  105. E. Masini, E. Eleonora Loi, A.-F. Vega-Benedetti, et al., “An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity,” Int. J. Mol. Sci., 21, 8290 (2020), https://doi.org/10.3390/ijms21218290.

  106. Massachusetts General Hospital, “Human amyloid-beta acts as natural antibiotic in the brain: Alzheimer’s-associated amyloid plaques may trap microbes” ScienceDaily, May 25, 2016, www.sciencedaily.com/releases/2016/05/160525161351.htm.

  107. E. Nanou and W. A. Catterall, “Calcium channels, synaptic plasticity, and neuropsychiatric disease,” Neuron, 98, No. 3, 466–481 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. F. Ng, K. Hallam, N. Lucas, and M. Berk, “The role of lamotrigine in the management of bipolar disorder,” Neuropsychiatr. Dis. Treat., 3, 463–474 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. R. L. Nguyen, Y. V. Medvedeva, T. E. Ayyagari, et al., “Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways,” Biochim. Biophys. Acta Mol. Cell. Res., 1865, 1718–1732 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. D. G. Nicholls, “Mitochondria and calcium signaling,” Cell Calcium, 38, No. 3–4, 311–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. A. Nobis, D. Zalewski, and N. Waszkiewicz, “Peripheral markers of depression,” J. Clin. Med., 9, No.12, 3793 (2020).

  112. A. Norkeviciene, R. Gocentiene, A. Sestokaite, et al., “A systematic review of candidate genes for major depression,” Medicina (Kaunas), 58, No. 2, 285 (2022).

    Google Scholar 

  113. K. Ohi, C. Sumiyoshi, H. Fujino, et al., “Genetic overlap between general cognitive function and schizophrenia: A review of cognitive GWASs,” Int. J. Mol. Sci., 19, No. 12, pii: E3822 (2018).

  114. N. J. Ortner and J. Striessnig, “L-type calcium channels as drug targets in CNS disorders,” Channels (Austin), 10, No. 1, 7–13 (2016).

    Article  PubMed  Google Scholar 

  115. L. Palmieri, V. Papaleo, V. V Porcelli, et al., “Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1,” Mol. Psychiatry, 15, 38–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. M. B. Pavlova, D. A. Smagin, N. N. Kudryavtseva, and N. A. Dyuzhikova, “Changes in the expression of genes, associated with calcium processes, in the hippocampus of mice under the influence of chronic social defeat stress,” Mol. Biol. (Mosk.), 57, No. 2, 373–383 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. E. Pchitskaya, E. Popugaeva, and I. Bezprozvanny, “Calcium signaling and molecular mechanisms underlying neurodegenerative diseases,” Cell Calcium, 70, 87–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. A. Pinggera, L. Mackenroth, A. Rump, et al., “New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy,” Hum. Mol. Genet., 26, 2923–2932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. R. Pochet, Calcium: The Molecular Basis of Calcium Action in Biology and Medicine, Kluwer Academic Publishers (2000).

  120. E. Popugaeva, E. Pchitskaya, and I. Bezprozvanny, “Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease – A therapeutic opportunity,” Biochem. Biophys. Res. Commun, 483, 998–1004 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. A. Pourtavakoli and S. Ghafouri-Fard, “Calcium signaling in neurodevelopment and pathophysiology of autism spectrum disorders,” Mol. Biol. Rep., 49, 10811–10823 (2022), https://doi.org/https://doi.org/10.1007/s11033-022-07775-6.

    Article  CAS  PubMed  Google Scholar 

  122. K. S. Prabhavalkar, N. B. Poovanpallil, and L. K. Bhatt, “Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer,” Front. Pharmacol., 6, 242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. S. M. Purcell, J. L. Moran, M. Fromer, et al., “A polygenic burden of rare disruptive mutations in schizophrenia,” Nature, 506, No.7487, 185–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. D. Purves, G. Augustine, D. Fitzpatrick, et al., Neuroscience, Sinauer Associates, Massachusetts (2012), Vol. 95, pp. 95, 147, 148.

  125. S. Qiu, Y. Qiu, and Y. Li, et al., “Genetics of autism spectrum disorder: an umbrella review of systematic reviews and meta-analyses,” Transl. Psychiatry, 12, 249 (2022), https://doi.org/https://doi.org/10.1038/s41398-022-02009-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. S. Ripke, B. M. Neale, A. Corvin, et al., “Biological insights from 108 schizophrenia-associated genetic loci,” Nature, 511, No. 7510, 421–427 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  127. A. J. Robison, “Emerging role of CaMKII in neuropsychiatric disease,” Trends Neurosci., 37, No. 11, 653–62 (2014), Epub July 30, 2014, https://doi.org/10.1016/j.tins.2014.07.001.

  128. C. A. Ross, R. L. Margolis, S. A. J. Reading, et al., “Neurobiology of schizophrenia,” Neuron, 52, 139–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. K. Sałaciak, A. Koszałka, E. Żmudzka, and K. Pytka, “The calcium/ calmodulin-dependent kinases II and IV as therapeutic targets in neurodegenerative and neuropsychiatric disorders,” Int. J. Mol. Sci., 22, 4307 (2021), https://doi.org/https://doi.org/10.3390/ijms22094307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. E. Salińska and J. W. Łazarewicz, “Role of calcium in physiology and pathology of neurons,” Postepy Biochem., 58, No. 4, 403–417 (2012).

    PubMed  Google Scholar 

  131. A. Sandoval, P. Duran, M. A. Gandini, et al., “Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway,” Cell Calcium, 66, 1–9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. A. Sarkar, M. Irwin, A. Singh, et al., “Alzheimer’s disease: The silver tsunami of the 21st century,” Neural Regen. Res., 11, No. 5, 693–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. G. Schmunk and J. J. Gargus, “Channelopathy pathogenesis in autism spectrum disorders,” Front. Genet., 4, 222 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. D. J. Selkoe and J. Hardy, “The amyloid hypothesis of Alzheimer’s disease at 25 years,” EMBO Mol. Med., 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. B. L. Sinnen, A. B. Bowen, E. S. Gibson, and M. J. Kennedy, “Local and use-dependent effects of beta-amyloid oligomers on NMDA receptor function revealed by optical quantal analysis,” J. Neurosci., 36, 11,532–11,543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. M. Sofuoglu, R. Rosenheck, and I. Petrakis, “Pharmacological treatment of comorbid PTSD and substance use disorder: Recent progress,” Addict. Behav., 39, 428–433 (2014).

    Article  PubMed  Google Scholar 

  137. S. J. Soscia, J. E. Kirby, K. J. Washicosky, et al., “The alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide,” PLoS One, 5, e9505 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. I. Splawski, K. W. Timothy, L. M. Sharpe, et al., “CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism,” Cell, 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. I. Splawski, D. S. Yoo, S. C. Stotz, et al., “CACNA1H mutations in autism spectrum disorders,” J. Biol. Chem., 281, 22085–22091 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. D. Stacey, S. Cohen-Woods, C. Toben, et al., “Evidence of increased risk for major depressive disorder in individuals homozygous for the high-expressing 5-HTTLPR/rs25531 (LA) allele of the serotonin transporter promoter,” Psychiatr. Genet., 23, 222–223 (2013).

    Article  PubMed  Google Scholar 

  141. A. Stefani, F. Spadoni, A. Siniscalchi, and G. Bernardi, “Lamotrigine inhibits Ca2+ currents in cortical neurons: Functional implications,” Eur. J. Pharmacol., 307, 113–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. F. C. Stevens, “Calmodulin: an introduction,” Can. J. Biochem. Cell Biol. Biol., 61, No. 8, 906–10 (1983).

    Article  CAS  Google Scholar 

  143. M. M. Stratton, L. H. Chao, H. Schulman, and J. Kuriyan, “Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II,” Curr. Opin. Struct. Biol., 23, No.2, 292–301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. S. Sun, H. Zhang, J. Liu, et al., “Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice,” Neuron, 82, 79–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. L. A. Swayne, L. Chen, S. Hameed, et al., “Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels,” Mol. Cell. Neurosci., 30, 339–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. M. Tabaton and E. Tamagno, “The molecular link between beta- and gamma-secretase activity on the amyloid beta precursor protein,” Cell. Mol. Life Sci., 64, No. 17, 2211–2218 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. A. Takata, N. Miyake, Y. Tsurusaki, et al., “Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder,” Cell Rep., 22, 734–747 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. T.-S. Tang, H. Tu, E. Y. Chan, et al., “Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1,” Neuron, 39, 227–239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. E. C. Toescu and A. Verkhratsky, “The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging,” Aging Cell, 6, 267–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. B. C.-K Tong, A. J. Wu, M. Li, and K.-H. Cheung, “Calcium signaling in Alzheimer’s disease & therapies,” Biochem. Biophys. Acta Mol. Cell Res., 1865, 1745–1760 (2018).

  151. J. Vallipuram, J. Grenville, and D. A. Crawford, “The E646DATP13A4 mutation associated with autism reveals a defect in calcium regulation,” Cell. Mol. Neurobiol., 30, 233–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. G. Venkiteswaran and G. Hasan, “Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight,” Proc. Natl. Acad. Sci. USA, 106, No. 25, 10326–10331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. J. P. Vonsattel and M. Difiglia, “Hantinton desease,” J. Neuropathol. Exp. Neurol., 57, No. 5, 369–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. F. O. Walker, “Huntington’s disease,” Lancet, 369, 218–228 (2007), https://doi.org/https://doi.org/10.1016/S0140-6736(07)60111-1.

    Article  CAS  PubMed  Google Scholar 

  155. S. Wang, Y. Yabuki, K. Matsuo, et al., “T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice,” PLoS One, 13, e0206986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. M. W. Ward, H. J. Huber, P. Weisova, et al., “Mitochondrial and plasma membrane potential of cultured cerebellar neurons during glutamate induced necrosis, apoptosis and tolerance,” J. Neurosci., 27, No. 31, 8238–8249 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. M. Weiergräber, M. Henry, K. Radhakrishna, et al., “Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel,” J. Neurophysiol., 97, 3660–3669 (2007).

    Article  PubMed  Google Scholar 

  158. H. Wiener, L. Klei, M. Calkins, et al., “Principal components of heritability from neurocognitive domains differ between families with schizophrenia and control subjects,” Schizophr. Bull., 39, No. 2, 464–471 (2013).

    Article  PubMed  Google Scholar 

  159. G. Wu, A. Feder, G. Wegener, et al., “Central functions of neuropeptide Y in mood and anxiety disorders,” Expert Opin. Ther. Targets, 15, No. 11, 1317–1331 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. J. Wu, D. A. Ryskamp, X. Liang, et al., “Enhanced store-operated calcium entry leads to striatal synaptic loss in a huntington’s disease mouse model,” J. Neurosci., 36, 125–141 (2016b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. J. Wu, H. P. Shih, V. Vigont, et al., “Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington’s disease treatment,” Chem. Biol., 18, 777–793 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. J. Xu, Y. Yabuki, M. Yu, and K. Fukunaga, “T-type calcium channel enhancer SAK3 produces anti-depressant-like effects by promoting adult hippocampal neurogenesis in olfactory bulbectomized mice,” J. Pharmacol. Sci., 137, 333–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. B. York, F. Li, F. Lin, et al., “Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD,” Sci. Rep., 7, No. 1, 11793 (2017).

  164. G. Zai, T. W. Robbins, B. J. Sahakian, and J. L. Kennedy, “A review of molecular genetic studies of neurocognitive deficits in schizophrenia,” Neurosci. Biobehav. Rev., 72, 50–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. G. W. Zamponi, “Targeting voltage-gated calcium channels in neurological and psychiatric diseases,” Nat. Rev. Drug Discov., 15, 19–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. F. Zeidan-Chulia, J. L. Rybarczyk-Filho, A. B. Salmina, et al., “Exploring the multifactorial nature of autism through computational systems biology: calcium and the rho GTPase RAC1 under the spotlight,” Neuromolecular Med., 15, No. 2, 364–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. M. M. Zeron, O. Hansson, N. Chen, et al., “Increased sensitivity to N-methyl-D-aspartate receptormediated excitotoxicity in a mouse model of Huntington’s disease,” Neuron, 33, 849–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. H. Zhang, S. Sun, L. Wu, et al., “Store-operated calcium channel complex in postsynaptic spines: A new therapeutic target for Alzheimer’s disease treatment,” J. Neurosci., 36, 11837–11850 (2016a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. H. Zhang, L. Wu, E. Pchitskaya, et al., “Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease,” J. Neurosci., 35, 13275–13286 (2015b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. C. Zuccato, M. Valenza, and E. Cattaneo, “Molecular mechanisms and potential therapeutical targets in Huntington’s,” Physiol. Rev., 90, No. 3, 905–981 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Dyuzhikova.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 54, No. 2, pp. 37–55, April–June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyuzhikova, N.A., Pavlova, M.B. Calciopathies and Neuropsychiatric Disorders: Physiological and Genetic Aspects. Neurosci Behav Physi 53, 1269–1282 (2023). https://doi.org/10.1007/s11055-023-01522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01522-5

Keywords

Navigation