Skip to main content
Log in

The Role of the Hippocampus in the Perception and Recall of Odors. A Hypothetical Neural Mechanism

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A mechanism for the interdependent functioning of the olfactory and hippocampal neural networks is proposed. This functioning involves a significant role played by long-term changes in the efficiency of connections between neurons in these networks, as well as in the ventral part of the basal ganglia, the frontal areas of the cortex, and the thalamic reunions and mediodorsal nuclei. Odors are involved in spatial mapping and navigation because these two types of information are processed simultaneously and interdependently. The proposed mechanism forming representations of “odor–object–place” associations in the activity of neurons in different hippocampal fields may underlie the participation of odors in determining “place fields.” Hippocampal field CA2 makes an important contribution to this process, facilitating the memorization and retrieval of information related to odors and their locations. Due to hippocampal projections to the olfactory structures, spatial representations of the environment are also formed in the activity of neurons in the piriform cortex. According to the mechanism proposed here, damage to different components in the chains analyzed, as well as weakening of neurogenesis in the dentate gyrus and the olfactory bulb, should impair the sense of smell and memory for odors. This consequence is consistent with olfactory deficits in a number of neurodegenerative and viral diseases, as well as aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. G. Sil’kis, “Involvement of the trisynaptic hippocampal pathway in the formation of neural maps of object-place associations (analytical review),” Zh. Vyssh. Nerv. Deyat., 59, No. 6, 645 (2009).

  2. I. G. Sil’kis, “The role of the basal ganglia in the processing of complex auditory stimuli and auditory attention,” Usp. Fiziol. Nauk., 46, No. 3, 76 (2015).

  3. I. G. Sil’kis, “Participation of hypothalamic nuclei in the formation of object-place associations in hippocampal field CA2 neurons (a hypothetical mechanism),” Zh. Vyssh. Nerv. Deyat., No. 71, No. 2, 147 (2021), https://doi.org/10.31857/S0044467721020106.

  4. I. G. Sil’kis, “Similarity of the mechanisms of processing olfactory, auditory and visual information in the central nervous system (a hypothesis), Neirokhimiya, 40, No. 1, 1 (2023), https://doi.org/10.31857/S1027813323010193.

  5. D. Aikath, A. P. Weible, D. C. Rowland, and C. G. Kentros, “Role of self-generated odor cues in contextual representation,” Hippocampus, 24, No. 8, 1039 (2014), https://doi.org/https://doi.org/10.1002/hipo.22289.

    Article  Google Scholar 

  6. J. B. Aimone, W. Deng, and F. H. Gage, “Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation,” Neuron, 70, No. 4, 589 (2011), https://doi.org/https://doi.org/10.1016/j.neuron.2011.05.010.

    Article  CAS  Google Scholar 

  7. G. M. Alexander, S. Farris, J. R. Pirone, et al., “Social and novel contexts modify hippocampal CA2 representations of space,” Nat. Commun., 7, 10300 (2016), https://doi.org/https://doi.org/10.1038/ncomms10300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. J. Aqrabawi and J. C. Kim, “Olfactory memory representations are stored in the anterior olfactory nucleus,” Nat. Commun., 11, No. 1, 1246 (2020), https://doi.org/10.1038/s41467-020-15032-2.

  9. A. J. Aqrabawi and J. C. Kim, “Hippocampal projections to the anterior olfactory nucleus differentially convey spatiotemporal information during episodic odour memory,” Nat. Commun., 9, No. 1, 2735 (2018), https://doi.org/10.1038/s41467-018-05131-6.

  10. M. M. Bannert and A. Bartels, “Human V4 activity patterns predict behavioral performance in imagery of object color,” J. Neurosci., 38, No. 15, 3657 (2018), https://doi.org/10.1523/JNEUROSCI.2307-17.2018.

  11. A. H. Bayat, H. Azimi, M. Hassani Moghaddam, et al., “COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus,” Apoptosis, 27, No. 11–12, 852 (2022), https://doi.org/10.1007/s10495-022-01754-9.

  12. A. Benoy, A. Dasgupta, and S. Sajikumar, “Hippocampal area CA2: an emerging modulatory gateway in the hippocampal circuit,” Exp. Brain Res., 236, No. 4, 919 (2018), https://doi.org/10.1007/s00221-018-5187-5.

  13. G. Bhasin and I. R. Nair, “Dynamic hippocampal CA2 responses to contextual spatial novelty,” Front. Syst. Neurosci., 16, 923911 (2022), https://doi.org/https://doi.org/10.3389/fnsys.2022.923911.

    Article  PubMed  PubMed Central  Google Scholar 

  14. G. Biella and M. de Curtis, “Olfactory inputs activate the medial entorhinal cortex via the hippocampus,” J. Neurophysiol., 83, No. 4, 1924 (2000), https://doi.org/10.1152/jn.2000.83.4.1924.

  15. T. Bitter, F. Siegert, H. Gudziol, et al., “Gray matter alterations in parosmia,” Neuroscience, 177, 177 (2011), https://doi.org/https://doi.org/10.1016/j.neuroscience.2011.01.016.

    Article  CAS  PubMed  Google Scholar 

  16. S. H. Bitzenhofer, E. A. Westeinde, H. B. Zhang, and J. S. Isaacson, “Rapid odor processing by layer 2 subcircuits in lateral entorhinal cortex,” eLife, 11, e75065 (2022), https://doi.org/10.7554/eLife.75065.

  17. S. Boesveldt, R. J. de Muinck Keizer, Wolters, E. C., and H. W. Berendse, “Odor recognition memory is not independently impaired in Parkinson’s disease,” J. Neural Transm. (Vienna), 116, No. 5, 575 (2009), https://doi.org/10.1007/s00702-009-0208-y.

  18. T. Cassano, A. Romano, T. Macheda, et al., “Olfactory memory is impaired in a triple transgenic model of Alzheimer disease,” Behav. Brain Res., 224, No. 2, 408 (2011), https://doi.org/10.1016/j.bbr.2011.06.029.

  19. L. A. Cenquizca and L. W. Swanson, “Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex,” Brain Res. Rev., 56, No. 1, 1 (2007), https://doi.org/10.1016/j.brainresrev.2007.05.002.

  20. F. A. Chaillan, F. S. Roman, and B. Soumireu-Mourat, “Modulation of synaptic plasticity in the hippocampus and piriform cortex by physiologically meaningful olfactory cues in an olfactory association task,” J. Physiol. Paris, 90, No. 5–6, 343 (1996), https://doi.org/10.1016/s0928-4257(97)87916-8.

  21. J. Chapuis, Y. Cohen, X. He, et al., “Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination,” J. Neurosci., 33, No. 33, 13449 (2013), https://doi.org/10.1523/JNEUROSCI.1387-13.2013.

  22. V. Chevaleyre and S. A. Siegelbaum, “Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop,” Neuron, 66, No. 4, 560 (2010), https://doi.org/https://doi.org/10.1016/j.neuron.2010.04.013.

    Article  CAS  Google Scholar 

  23. L. Dahmani, R. M. Patel, Y. Yang, et al., “An intrinsic association between olfactory identification and spatial memory in humans,” Nat. Commun., 9, No. 1, 4162 (2018), https://doi.org/10.1038/s41467-018-06569-4.

  24. A. Dasgupta, N. Baby, K. Krishna, et al., “Substance P induces plasticity and synaptic tagging/capture in rat hippocampal area CA2,” Proc. Natl. Acad. Sci. USA, 114, No. 41, E8741 (2017), https://doi.org/10.1073/pnas.1711267114.

  25. F. Datiche, P. H. Luppi, and M. Cattarelli, “Projection from nucleus reuniens thalami to piriform cortex: a tracing study in the rat,” Brain Res. Bull., 38, No. 1, 87 (1995), https://doi.org/10.1016/0361-9230 (95)00075-p.

  26. C. De La Rosa-Prieto, M. De Moya-Pinilla, D. Saiz-Sanchez, et al., “Olfactory and cortical projections to bulbar and hippocampal adultborn neurons,” Front. Neuroanat., 9, 4 (2015), https://doi.org/https://doi.org/10.3389/fnana.2015.00004.

    Article  PubMed  Google Scholar 

  27. S. S. Deshmukh and U. S. Bhalla, “Representation of odor habituation and timing in the hippocampus,” J. Neurosci., 23, No. 5, 1903 (2003), https://doi.org/10.1523/JNEUROSCI.23-05-01903.2003.

  28. H. Eichenbaum, “Using olfaction to study memory,” Ann. N. Y. Acad. Sci., 855, 657 (1998), https://doi.org/https://doi.org/10.1111/j.1749-6632.1998.tb10642.x.

    Article  CAS  PubMed  Google Scholar 

  29. H. Eichenbaum and R. J. Robitsek, “Olfactory memory: a bridge between humans and animals in models of cognitive aging,” Ann. N. Y. Acad. Sci., 1170, 658 (2009), https://doi.org/https://doi.org/10.1111/j.1749-6632.2009.04012.x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. Ferraris, J. C. Cassel, A. Pereira de Vasconcelos, et al., “The nucleus reuniens, a thalamic relay for cortico-hippocampal interaction in recent and remote memory consolidation,” Neurosci. Biobehav. Rev., 125, 339 (2021), https://doi.org/https://doi.org/10.1016/j.neubiorev.2021.02.025.

    Article  CAS  PubMed  Google Scholar 

  31. W. Fischler-Ruiz, D. G. Clark, N. R. Joshi, et al., “Olfactory landmarks and path integration converge to form a cognitive spatial map,” Neuron, 109, No. 24, 4036.e5 (2021), https://doi.org/https://doi.org/10.1016/j.neuron.2021.09.055.

    Article  CAS  Google Scholar 

  32. E. Galliot, A. Comte, E. Magnin, et al., “Effects of an ambient odor on brain activations during episodic retrieval of objects,” Brain Imaging Behav., 7, No. 2, 213 (2013), https://doi.org/10.1007/s11682-012-9218-8.

  33. S. Ge, C. H. Yang, K. S. Hsu, et al., “A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain,” Neuron, 54, No. 4, 559 (2007), https://doi.org/https://doi.org/10.1016/j.neuron.2007.05.002.

    Article  CAS  Google Scholar 

  34. P. E. Gilbert, E. Pirogovsky, S. Ferdon, et al., “Differential effects of normal aging on memory for odor-place and object-place associations,” Exp. Aging Res., 34, No. 4, 437 (2008), https://doi.org/10.1080/03610730802271914.

  35. V. Gnatkovsky, L. Uva, and M. de Curtis, “Topographic distribution of direct and hippocampus-mediated entorhinal cortex activity evoked by olfactory tract stimulation,” Eur. J. Neurosci., 20, No. 7, 1897 (2004), https://doi.org/10.1111/j.1460-9568.2004.03627.x.

  36. N. J. Goodrich-Hunsaker, P. E. Gilbert, and R. O. Hopkins, “The role of the human hippocampus in odor-place associative memory,” Chem. Senses, 34, No. 6, 513 (2009), https://doi.org/10.1093/chemse/bjp026.

  37. J. A. Gottfried, A. P. Smith, M. D. Rugg, and R. J. Dolan, “Remembrance of odors past: human olfactory cortex in cross-modal recognition memory,” Neuron, 42, No. 4, 687 (2004), https://doi.org/https://doi.org/10.1016/s0896-6273(04)00270-3.

    Article  Google Scholar 

  38. B. Gourévitch, L. M. Kay, and C. Martin, “Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task,” J. Neurophysiol., 103, No. 5, 2633 (2010), https://doi.org/10.1152/jn.01075.2009.

  39. S. L. Grella, A. H. Fortin, O. McKissick, et al., “Odor modulates the temporal dynamics of fear memory consolidation,” Learn. Mem., 27, No. 4, 150 (2020), https://doi.org/10.1101/lm.050690.119.

  40. E. Hanson, J. Swanson, and B. R. Arenkiel, “Sensory experience shapes the integration of adult-born neurons into the olfactory bulb,” J. Nat. Sci., 3, No. 8, e422 (2017).

  41. F. L. Hitti and S. A. Siegelbaum, “The hippocampal CA2 region is essential for social memory,” Nature, 508, No. 7494, 88 (2014), https://doi.org/https://doi.org/10.1038/nature13028.

    Article  CAS  Google Scholar 

  42. C. C. Huang, E. T. Rolls, C. H. Hsu, et al., “Extensive cortical connectivity of the human hippocampal memory system: Beyond the “What” and “Where” dual stream model,” Cereb. Cortex, 31, No. 10, 4652 (2021), https://doi.org/10.1093/cercor/bhab113.

  43. R. Insausti, P. Marcos, M. M. Arroyo-Jiménez, et al., “Comparative aspects of the olfactory portion of the entorhinal cortex and its projection to the hippocampus in rodents, nonhuman primates, and the human brain,” Brain Res. Bull., 57, No. 3–4, 557 (2002), https://doi.org/10.1016/s0361-9230(01)00684-0.

  44. K. Jaako-Movits and A. Zharkovsky, “Impaired fear memory and decreased hippocampal neurogenesis following olfactory bulbectomy in rats,” Eur. J. Neurosci., 22, No. 11, 2871 (2005), https://doi.org/10.1111/j.1460-9568.2005.04481.x.

  45. M. Jones-Gotman and R. J. Zatorre, “Odor recognition memory in humans: role of right temporal and orbitofrontal regions,” Brain Cogn., 22, No. 2, 182 (1993), https://doi.org/10.1006/brcg.1993.1033.

  46. P. E. Jorge, J. B. Phillips, A. Gonçalves, et al., “Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration,” Proc. Biol. Sci., 281, No. 1783, 20140025 (2014), https://doi.org/10.1098/rspb.2014.0025.

  47. A. L. Kazarian, A. A. Hekimian, and B. A. Harutiunian-Kozak, et al., “Responses of cat’s dorsal hippocampal neurones to moving visual stimuli,” Acta Neurobiol. Exp. (Wars.), 55, No. 2, 99 (1995).

  48. R. P. Kesner, M. R. Hunsaker, and W. Ziegler, “The role of the dorsal and ventral hippocampus in olfactory working memory,” Neurobiol. Learn. Mem., 96, No. 2, 361 (2011), https://doi.org/10.1016/j.nlm.2011.06.011.

  49. W. B. Kim and J. H. Cho, “Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala,” J. Neurosci., 37, No. 19, 4868 (2017), https://doi.org/10.1523/JNEUROSCI.3579-16.2017.

  50. G. Kjelvik, H. R. Evensmoen, V. Brezova, and A. K. Håberg, “The human brain representation of odor identification,” J. Neurophysiol., 108, No. 2, 645 (2012), https://doi.org/10.1152/jn.01036.2010.

  51. S. Knafo, G. Ariav, E. Barkai, and F. Libersat, “Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons,” Hippocampus, 14, No. 7, 819 (2004), https://doi.org/https://doi.org/10.1002/hipo.10219.

    Article  Google Scholar 

  52. H. Künzle, “An extrahippocampal projection from the dentate gyrus to the olfactory tubercle,” BMC Neurosci., 6, 38 (2005), https://doi.org/https://doi.org/10.1186/1471-2202-6-38.

    Article  PubMed  PubMed Central  Google Scholar 

  53. P. Lavenex and D. G. Amaral, “Hippocampal-neocortical interaction: a hierarchy of associativity,” Hippocampus, 10, No. 4, 420–430 (2000), https://doi.org/https://doi.org/10.1002/1098-1063(2000)10:43.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  54. M. A. Lebedev and A. Ossadtchi, “Commentary: Spatial olfactory learning contributes to place field formation in the hippocampus,” Front. Syst. Neurosci., 12, 8 (2018), https://doi.org/https://doi.org/10.3389/fnsys.2018.00008.

    Article  PubMed  PubMed Central  Google Scholar 

  55. A. B. Lehr, A. Kumar, C. Tetzlaff, et al., “CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing,” Neurosci. Biobehav. Rev., 126, 398 (2021), https://doi.org/https://doi.org/10.1016/j.neubiorev.2021.03.020.

    Article  CAS  PubMed  Google Scholar 

  56. F. C. Leitner, S. Melzer, H. Lütcke, et al., “Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex,” Nat. Neurosci., 19, No. 7, 935 (2016), https://doi.org/10.1038/nn.4303.

  57. M. Levinson, J. P. Kolenda, G. J. Alexandrou, et al., “Contextdependent odor learning requires the anterior olfactory nucleus,” Behav. Neurosci., 134, No. 4, 332 (2020), https://doi.org/10.1037/bne0000371.

  58. D. A. Levy, R. O. Hopkins, and L. R. Squire, “Impaired odor recognition memory in patients with hippocampal lesions,” Learn. Mem., 11, No. 6, 794 (2004), https://doi.org/10.1101/lm.82504.

  59. Y. Li, J. Xu, Y. Liu, et al., “A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning,” Nat. Neurosci., 20, No. 4, 559 (2017), https://doi.org/10.1038/nn.4517.

  60. S. B. Linley, M. M. Gallo, and R. P. Vertes, “Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task,” Brain Res., 1649, Pt. A, 110 (2016), https://doi.org/10.1016/j.brainres.2016.08.022.

  61. P. Liu and D. K. Bilkey, “Parallel involvement of perirhinal and lateral entorhinal cortex in the polysynaptic activation of hippocampus by olfactory inputs,” Hippocampus, 7, No. 3, 296 (1998); https://doi.org/https://doi.org/10.1002/(SICI)1098-1063(1997)7:3<296::AID-HIPO5>3.0.CO;2-J.

    Article  Google Scholar 

  62. P. Lunardi, L. M. Z. Mansk, L. F. Jaimes, and G. S. Pereira, “On the novel mechanisms for social memory and the emerging role of neurogenesis,” Brain Res. Bull., 171, 56 (2021), https://doi.org/https://doi.org/10.1016/j.brainresbull.2021.03.006.

    Article  PubMed  Google Scholar 

  63. D. K. Ma, W. R. Kim, G. L. Ming, and H. Song, “Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis,” Ann. N. Y. Acad. Sci., 1170, 664 (2009), https://doi.org/https://doi.org/10.1111/j.1749-6632.2009.04373.x.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Q. Ma, E. T. Rolls, C. C. Huang, et al., “Extensive cortical functional connectivity of the human hippocampal memory system,” Cortex, 147, 83 (2022), https://doi.org/https://doi.org/10.1016/j.cortex.2021.11.014.

    Article  PubMed  Google Scholar 

  65. C. J. MacDonald, S. Carrow, R. Place, and H. Eichenbaum, “Distinct hippocampal time cell sequences represent odor memories in immobilized rats,” J. Neurosci., 33, 14607 (2013), https://doi.org/https://doi.org/10.1523/JNEUROSCI.1537-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. E. A. Mankin, G. W. Diehl, F. T. Sparks, et al., “Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts,” Neuron, 85, No. 1, 190 (2015), https://doi.org/https://doi.org/10.1016/j.neuron.2014.12.001.

    Article  CAS  Google Scholar 

  67. A. V. Masurkar, K. V. Srinivas, D. H. Brann, et al., “Medial and lateral entorhinal cortex differentially excite deep versus superficial CA1 pyramidal neurons,” Cell Rep., 18, No. 1, 148 (2017), https://doi.org/10.1016/j.celrep.2016.12.012.

  68. S. J. Middleton and T. J. McHugh, “CA2: A highly connected intrahippocampal relay,” Annu. Rev. Neurosci., 43, 55 (2020), https://doi.org/https://doi.org/10.1146/annurev-neuro-080719-100343.

    Article  CAS  PubMed  Google Scholar 

  69. A. M. Mouly and G. Di Scala, “Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat,” Neuroscience, 137, No. 4, 1131 (2006), https://doi.org/https://doi.org/10.1016/j.neuroscience.2005.10.024.

    Article  CAS  Google Scholar 

  70. E. A. Murray, S. P. Wise, and K. S. Graham, “Representational specializations of the hippocampus in phylogenetic perspective,” Neurosci. Lett., 680, 4 (2018), https://doi.org/https://doi.org/10.1016/j.neulet.2017.04.065.

    Article  CAS  PubMed  Google Scholar 

  71. P. A. Naber, F. H. Lopes da Silva, and M. P. Witter, “Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum,” Hippocampus, 11, No. 2, 99 (2001), https://doi.org/https://doi.org/10.1002/hipo.1028.

    Article  Google Scholar 

  72. S. Nordin and C. Murphy, “Odor memory in normal aging and Alzheimer’s disease,” Ann. N. Y. Acad. Sci., 855, 686 (1998), https://doi.org/https://doi.org/10.1111/j.1749-6632.1998.tb10646.x.

    Article  CAS  PubMed  Google Scholar 

  73. T. Otto, F. Schottler, U. Staubli, et al., “Hippocampus and olfactory discrimination learning: effects of entorhinal cortex lesions on olfactory learning and memory in a successive-cue, go-no-go task,” Behav. Neurosci., 105, No. 1, 111 (1991), https://doi.org/10.1037/%2F0735-7044.105.1.111.

  74. C. C. Pang, C. Kiecker, J. T. O’Brien, et al., “Ammon’s horn 2 (CA2) of the hippocampus: A long-known region with a new potential role in neurodegeneration,” Neuroscientist, 25, No. 2, 167 (2019), https://doi.org/https://doi.org/10.1177/1073858418778747.

    Article  CAS  Google Scholar 

  75. A. R. Pereira-Caixeta, L. O. Guarnieri, and D. C. Medeiros, et al., “Inhibiting constitutive neurogenesis compromises long-term social recognition memory,” Neurobiol. Learn. Mem., 155, 92 (2018), https://doi.org/https://doi.org/10.1016/j.nlm.2018.06.014.

    Article  PubMed  Google Scholar 

  76. B. M. Persson, V. Ambrozova, et al., “Lateral entorhinal cortex lesions impair odor-context associative memory in male rats,” J. Neurosci. Res., 100, No. 4, 1030 (2022), https://doi.org/10.1002/jnr.25027.

  77. O. T. Phillipson and A. C. Griffiths, “The topographic order of inputs to nucleus accumbens in the rat,” Neuroscience, 16, No. 2, 275 (1985), https://doi.org/https://doi.org/10.1016/0306-4522(85)90002-8.

    Article  Google Scholar 

  78. C. Poo, G. Agarwal, N. Bonacchi, and Z. F. Mainen, “Spatial maps in piriform cortex during olfactory navigation,” Nature, 601, No. 7894, 595 (2022), https://doi.org/https://doi.org/10.1038/s41586-021-04242-3.

    Article  CAS  Google Scholar 

  79. R. K. Radhakrishnan and M. Kandasamy, “SARS-CoV-2-mediated neuropathogenesis, deterioration of hippocampal neurogenesis and dementia,” Am. J. Alzheimers Dis. Other Dement., 37, 15333175221 078418 (2022), https://doi.org/10.1177/15333175221078418.

  80. B. A. Radvansky, J. Y. Oh, J. R. Climer, and D. A. Dombeck, “Behavior determines the hippocampal spatial mapping of a multisensory environment,” Cell Rep., 36, No. 5, 109444 (2021), https://doi.org/10.1016/j.celrep.2021.109444.

  81. S. J. Ramus, J. B. Davis, R. J. Donahue, et al., “Interactions between the orbitofrontal cortex and the hippocampal memory system during the storage of long-term memory,” Ann. N. Y. Acad. Sci., 1121, 216 (2007), https://doi.org/https://doi.org/10.1196/annals.1401.038.

    Article  PubMed  Google Scholar 

  82. H. S. Rethinavel, S. Ravichandran, R. K. Radhakrishnan, and M. Kandasamy, “COVID-19 and Parkinson’s disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia,” J. Chem. Neuroanat., 115, 101965 (2021), https://doi.org/https://doi.org/10.1016/j.jchemneu.2021.101965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. J. S. Riceberg, A. Srinivasan, K. G. Guise, and M. L. Shapiro, “Hippocampal signals modify orbitofrontal representations to learn new paths,” Curr. Biol., 32, No. 15, 3407 (2022), https://doi.org/10.1016/j.cub.2022.06.010.e6.

  84. V. Robert, L. Therreau, et al., “Local circuit allowing hypothalamic control of hippocampal area CA2 activity and consequences for CA1,” eLife, 10, e63352 (2021), https://doi.org/10.7554/eLife.63352.

  85. S. Robinson, L. Granata, R. D. Hienz, and C. M. Davis, “Temporary inactivation of the medial prefrontal cortex impairs the formation, but not the retrieval of social odor recognition memory in rats,” Neurobiol. Learn. Mem., 161, 115 (2019), https://doi.org/https://doi.org/10.1016/j.nlm.2019.04.003.

    Article  PubMed  Google Scholar 

  86. C. Rochefort, G. Gheusi, J. D. Vincent, and P. M. Lledo, “Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory,” J. Neurosci., 22, No. 7, 2679 (2002), https://doi.org/10.1523/JNEUROSCI.22-07-02679.2002.

  87. E. T. Rolls, G. Deco, C. C. Huang, and J. Feng, “The effective connectivity of the human hippocampal memory system,” Cereb. Cortex, 32, No. 17, 3706 (2022), https://doi.org/10.1093/cercor/bhab442.

  88. F. S. Roman, B. Truchet, F. A. Chaillan, et al., “Olfactory associative discrimination: a model for studying modifications of synaptic efficacy in neuronal networks supporting long-term memory,” Rev. Neurosci., 15, No. 1, 1 (2004), https://doi.org/10.1515/revneuro.2004.15.1.1.

  89. P. Roullet, R. Bourne, Y. Moricard, et al., “Learning-induced plasticity of N-methyl-D-aspartate receptors is task and region specific,” Neuroscience, 89, No. 4, 1145 (1999), https://doi.org/https://doi.org/10.1016/s0306-4522(98)00404-7.

    Article  Google Scholar 

  90. M. J. Russo, K. M. Franks, R. Oghaz, et al., “Synaptic organization of anterior olfactory nucleus inputs to piriform cortex,” J. Neurosci., 40, No. 49, 9414 (2020), https://doi.org/10.1523/JNEUROSCI.0965-20.2020.

  91. Z. Rusznák, G. Sengul, G. Paxinos, et al., “Odor enrichment increases hippocampal neuron numbers in mouse,” Exp. Neurobiol, 27, No. 2, 94 (2018), https://doi.org/10.5607/en.2018.27.2.94.

  92. A. Sahay, D. A. Wilson, and R. Hen, “Pattern separation: a common function for new neurons in hippocampus and olfactory bulb,” Neuron, 70, No. 4, 582 (2011), https://doi.org/https://doi.org/10.1016/j.neuron.2011.05.012.

    Article  CAS  Google Scholar 

  93. D. Saiz-Sanchez, C. De La Rosa-Prieto, I. Ubeda-Bañon, and A. Martinez- Marcos, “Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer’s disease,” Anat. Rec. (Hoboken), 296, No. 9, 1413 (2013), https://doi.org/10.1002/ar.22750.

  94. M. Sakamoto, N. Ieki, G. Miyoshi, et al., “Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning,” J. Neurosci., 34, No. 17, 5788 (2014), https://doi.org/10.1523/JNEUROSCI.0674-14.2014.

  95. C. Schmidt-Hieber, P. Jonas, and J. Bischofberger, “Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus,” Nature, 429, No. 6988, 184 (2004), https://doi.org/https://doi.org/10.1038/nature02553.

    Article  CAS  Google Scholar 

  96. W. K. Schwerdtfeger, E. H. Buhl, and P. Germroth, “Disynaptic olfactory input to the hippocampus mediated by stellate cells in the entorhinal cortex,” J. Comp. Neurol., 292, No. 2, 163 (1990), https://doi.org/10.1002/cne.902920202.

  97. I. Silkis, “A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing,” Biosystems, 89, No. 1–3, 227 (2007), https://doi.org/https://doi.org/10.1016/j.biosystems.2006.04.020.

    Article  Google Scholar 

  98. A. L. Soung, A. Vanderheiden, A. S. Nordvig, et al., “COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis,” Brain, 145, No. 12, 4193 (2022), https://doi.org/https://doi.org/10.1093/brain/awac270.

    Article  Google Scholar 

  99. K. V. Srinivas, E. W. Buss, Q. Sun, et al., “The dendrites of CA2 and CA1 pyramidal neurons differentially regulate information flow in the cortico-hippocampal circuit,” J. Neurosci., 37, No. 12, 3276 (2017), https://doi.org/10.1523/JNEUROSCI.2219-16.2017.

  100. E. L. Stevenson and H. K. Caldwell, “Lesions to the CA2 region of the hippocampus impair social memory in mice,” Eur. J. Neurosci., 40, No. 9, 3294 (2014), https://doi.org/10.1111/ejn.12689.

  101. C. Strauch, T. H. Hoang, F. Angenstein, and D. Manahan-Vaughan, “Olfactory information storage engages subcortical and cortical brain regions that support valence determination,” Cereb. Cortex, 32, No. 4, 689 (2022), https://doi.org/10.1093/cercor/bhab226.

  102. C. Strauch and D. Manahan-Vaughan, “In the piriform cortex, the primary impetus for information encoding through synaptic plasticity is provided by descending rather than ascending olfactory inputs,” Cereb. Cortex, No. 2, 764 (2018), https://doi.org/10.1093/cercor/bhx315.

  103. I. F. Syversen, M. P. Witter, A. Kobro-Flatmoen, et al., “Structural connectivity-based segmentation of the human entorhinal cortex,” NeuroImage, 245, 18723 (2021), https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118723.

    Article  Google Scholar 

  104. J. Taxidis, E. A. Pnevmatikakis, C. C. Dorian, et al., “Differential emergence and stability of sensory and temporal representations in context-specific hippocampal sequences,” Neuron, 108, No. 5, 984 (2020), https://doi.org/https://doi.org/10.1016/j.neuron.2020.08.028.e9.

    Article  Google Scholar 

  105. N. Tamamaki and Y. Nojyo, “Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats,” J. Comp. Neurol., 353, No. 3, 379 (1995), https://doi.org/10.1002/cne.903530306.

  106. R. D. Traub and M. A. Whittington, “Processing of cell assemblies in the lateral entorhinal cortex,” Rev. Neurosci., 33, No. 6, 829 (2022), https://doi.org/10.1515/revneuro-2022-0011.

  107. B. Truchet, F. A. Chaillan, B. Soumireu-Mourat, and F. S. Roman, “Early integrative processes physiologically observed in dentate gyrus during an olfactory associative training in rat,” J. Integr. Neurosci., 1, No. 1, 101 (2002), https://doi.org/10.1142/s0219635202000062.

  108. B. Truchet, F. A. Chaillan, B. Soumireu-Mourat, and F. S. Roman, “Learnig and memory of cue-reward association meaning by modifications of synaptic efficacy in dentate gyrus and piriform cortex,” Hippocampus, 12, No. 5, 600 (2002), https://doi.org/https://doi.org/10.1002/hipo.10097.

    Article  Google Scholar 

  109. L. Uva and M. de Curtis, “Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus,” Neuroscience, 130, No. 1, 249 (2005), https://doi.org/https://doi.org/10.1016/j.neuroscience.2004.08.042.

    Article  CAS  Google Scholar 

  110. A. R. E. Vandenbroucke, J. J. Fahrenfort, J. D. I. Meuwese, et al., “Prior knowledge about objects determines neural color representation in human visual cortex,” Cereb. Cortex, 26, No. 4, 1401 (2016), https://doi.org/10.1093/cercor/bhu224.

  111. C. H. Vanderwolf, “The hippocampus as an olfacto-motor mechanism: were the classical anatomists right after all,” Behav. Brain Res., 127, No. 1–2, 25 (2001), https://doi.org/10.1016/s0166-4328 (01)00354-0.

  112. T. van Groen and J. M. Wyss, “Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections,” J. Comp. Neurol., 302, No. 3, 515 (1990), https://doi.org/10.1002/cne.903020308.

  113. I. M. van Rijzingen, W. H. Gispen, and B. M. Spruijt, “Olfactory bulbectomy temporarily impairs Morris maze performance: an ACTH (4–9) analog accelerates return of function,” Physiol. Behav., 58, 147 (1995), https://doi.org/https://doi.org/10.1016/0031-9384(95)00032-E.

    Article  PubMed  Google Scholar 

  114. C. S. Weeden, N. J. Hu, L. U. Ho, and R. P. Kesner, “The role of the ventral dentate gyrus in olfactory pattern separation,” Hippocampus, 24, No. 5, 553 (2014), https://doi.org/https://doi.org/10.1002/hipo.22248.

    Article  Google Scholar 

  115. R. S. Wilson, S. E. Arnold, J. A. Schneider, et al., “The relationship between cerebral Alzheimer’s disease pathology and odour identification in old age,” J. Neurol. Neurosurg. Psychiatry, 78, No. 1, 30 (2007), https://doi.org/10.1136/jnnp.2006.099721.

  116. D. A. Wilson and R. J. Stevenson, “The fundamental role of memory in olfactory perception,” Trends Neurosci., 26, No. 5, 243 (2003), https://doi.org/10.1016/S0166-2236(03)00076-6.

  117. D. I. Wilson, S. Watanabe, H. Milner, and J. A. Ainge, “Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory,” Hippocampus, 23, No. 12, 1280 (2013), https://doi.org/https://doi.org/10.1002/hipo.22165.

    Article  Google Scholar 

  118. N. I. Woods, F. Stefanini, D. L. Apodaca-Montano, et al., “The dentate gyrus classifies cortical representations of learned stimuli,” Neuron, 107, No. 1, 173 (2020), https://doi.org/https://doi.org/10.1016/j.neuron.2020.04.002.e6.

    Article  Google Scholar 

  119. W. Xu, M. Lopez-Guzman, C. Schoen, et al., “Spared piriform cortical single-unit odor processing and odor discrimination in the Tg2576 mouse model of Alzheimer’s disease,” PLoS One, 9, No. 9, e106431 (2014), https://doi.org/https://doi.org/10.1371/journal.pone.0106431.

    Article  CAS  Google Scholar 

  120. W. Xu and D. A. Wilson, “Odor-evoked activity in the mouse lateral entorhinal cortex,” Neuroscience, 223, 12 (2012), https://doi.org/https://doi.org/10.1016/j.neuroscience.2012.07.067.

    Article  CAS  PubMed  Google Scholar 

  121. T. Yamamoto, “Involvement of the olfactory system in learning and memory: a close correlation between the olfactory deficit and the course of Alzheimer’s disease,” Yakubutsu Seishin Kodo, 11, No. 4, 223 (1991).

    Google Scholar 

  122. W. M. Yoder, L. S. Gaynor, S. N. Burke, et al., “Interaction between age and perceptual similarity in olfactory discrimination learning in F344 rats: relationships with spatial learning,” Neurobiol. Aging, 53, 122 (2017), https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2017.01.023.

    Article  PubMed  PubMed Central  Google Scholar 

  123. S. Zhang and D. Manahan-Vaughan, “Spatial olfactory learning contributes to place field formation in the hippocampus,” Cereb. Cortex, 25, No. 2, 423 (2015), https://doi.org/10.1093/cercor/bht239.

  124. J. Q. Zheng, “Cortical projections from the reuniens nucleus of the thalamus in the rat,” Kaibogaku Zasshi, 69, No. 3, 261 (1994).

    Google Scholar 

  125. G. Zhou, J. K. Olofsson, M. Z. Koubeissi, et al., “Human hippocampal connectivity is stronger in olfaction than other sensory systems,” Prog. Neurobiol., 201, 102027 (2021), https://doi.org/https://doi.org/10.1016/j.pneurobio.2021.102027.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Silkis.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 54, No. 2, pp. 20–36, April–June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkis, I.G. The Role of the Hippocampus in the Perception and Recall of Odors. A Hypothetical Neural Mechanism. Neurosci Behav Physi 53, 1255–1268 (2023). https://doi.org/10.1007/s11055-023-01521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01521-6

Keywords

Navigation