Skip to main content
Log in

Use of Machine Learning Methods to Analyze Patterns of Brain Activity during Assessment of the Self and Others

Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies of cerebral activity during the processing of self-referential information, in comparison with the processing of information related to other people, are based on use of mass univariate analysis with the assumption that activity in one region does not depend on activity in other regions. Recent times have seen an increase in interest in the use of neuroimaging in studies of spatially distributed information using multidimensional approaches such as multi-voxel pattern analysis (MVPA). We report here the use of MVPA to analyze fMRI data recorded during a task involving assessment of the self and other people of different degrees of closeness. Testing of the patterns identified by machine learning showed that these brain activity patterns predicted what the subject was assessing self or other in 75–88% of cases. Prognostically significant structures were widely distributed in different areas of the brain and, in addition to the cortical median structures making the greatest contribution, included areas of the visual, lateral prefrontal, and many other cortical areas. The most informative areas for the selection of the Self variant on classifying self/other were the ventral regions of the medial prefrontal and cingulate cortex, while for selection of Other the most informative were the parietal and occipital median areas. Principal components analysis revealed a combination of brain structures, including the anterior cingulate gyrus and the bilateral amygdalas, whose factor scores correlated positively with the psychometric reward sensitivity scale and negatively with the neuroticism scale. Activity in this combination of structures can be regarded as a protective factor against affective disorders. In general, the results obtained here demonstrate the productivity of using machine learning methods for analysis of data from experiments of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Atlas, L. Y., Lindquist, M. A., Bolger, N., and Wager, T. D., “Brain mediators of the effects of noxious heat on Pain,” Pain, 155, 1632–1648 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D., “Grounding conceptual knowledge in modality-specific systems,” Trends Cogn. Sci., 7, 84–91 (2003).

    Article  PubMed  Google Scholar 

  • Branco, P., Torgo, L., and Ribeiro, R. P., “A survey of predictive modeling on imbalanced domains,” ACM Comput. Surv., 49, 1–50 (2016).

    Article  Google Scholar 

  • Damasio, A., “Mental self: the person within,” Nature, 423, 227 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dannlowski, U., Konrad, C., Kugel, H., et al., “Emotion specific modulation of automatic amygdala responses by 5-HTTLPR genotype,” NeuroImage, 53, 893–898 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Davidson, R. J., “Anterior cerebral asymmetry and the nature of emotion,” Brain Cogn., 20, 125–151 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Denny, B. T., Kober, H., Wager, T. D., and Ochsner, K. N., “A meta-analysis of functional neuroimaging studies of self and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex,” J. Cogn. Neurosci., 24, 1742–1752 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Finlayson-Short, L., Davey, C. G., and Harrison, B. J., “Neural correlates of integrated self and social processing,” Soc. Cogn. Affect. Neurosci., 15, 941–949 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Finlayson-Short, L., Harrison, B. J., and Davey, C., “Self-other referential neural processing in social anxiety disorder and major depressive disorder,” NeuroImage Clin., 30, 102669 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fossati, P., Hevenor, S. J., Graham, S. J., et al., “In search of the emotional self: an FMRI study using positive and negative emotional words,” Am. J. Psychiatry, 160, 1938–1945 (2003).

    Article  PubMed  Google Scholar 

  • Frith, U. and Frith, C. D., “Development and neurophysiology of mentalizing,” Phil. Trans. Roy. Soc. Lond. B Biol. Sci., 358, 459–473 (2003).

  • Fusar-Poli, P., Placentino, A., Carletti, F., et al., “Laterality effect on emotional faces processing: ALE meta-analysis of evidence,” Neurosci. Lett., 452, No. 3, 262–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Gallagher, H. L., and Frith, C. D., “Functional imaging of ‘theory of mind,’” Trends Cogn. Sci., 7, 77–83 (2003).

    Article  PubMed  Google Scholar 

  • Gallagher, S., “A pattern theory of self,” Front. Hum. Neurosci., 7, 443 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillihan, S. J. and Farah, M. J., “Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience,” Psychol. Bull., 131, 76–97 (2005).

    Article  PubMed  Google Scholar 

  • Grigg, O. and Grady, C. L., “The default network and processing of personally relevant information: Converging evidence from task-related modulations and functional connectivity,” Neuropsychologia, 48, 3815–3823 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimm, S., Ernst, J., Boesiger, P., et al., “Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures,” Hum. Brain Mapp., 30, 2617–2627 (2009).

    Article  PubMed  Google Scholar 

  • Hamilton, J. P., Furman, D. J., Chang, C., et al., “Default-mode and taskpositive network activity in major depressive disorder: implications for adaptive and maladaptive rumination,” Biol. Psychiatry, 70, 327–333 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes, J. D. and Rees, G., “Decoding mental states from brain activity in humans,” Nat. Rev. Neurosci., 7, 523–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Heatherton, T. F., Wyland, C. L., Macrae, C. N., et al., “Medial prefrontal activity differentiates self from close others,” Soc. Cogn. Affect. Neurosci., 1, 18–25 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hood, B., The Self Illusion: How the Social Brain Creates Identity, Oxford University Press, Oxford, UK (2012).

    Google Scholar 

  • Ingram, R. E. and Luxton, D. D., “Vulnerability-stress models,” in: Development of Psychopathology: A Vulnerability-Stress Perspective, Sage Publ. (2005), pp. 32–46.

  • Kelley, W. M., Macrae, C. N., Wyland, C. L., et al., “Finding the self? An event-related fMRI study,” J. Cogn. Neurosci., 14, 785–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Knyazev, G. G., “Encoding meaning in brain activity,” Zh. Vyssh. Nerv. Deyat., 72, No. 6, 800–825 (2022).

    Google Scholar 

  • Knyazev, G. G., Belopolsky, V. I., Bodunov, M. V., and Wilson, G. D., “The factor structure of the Eysenck Personality Profiler in Russia,” Personal. Individ. Differ., 37, 1681–1692 (2004a).

    Article  Google Scholar 

  • Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., and Rudych, P. D., “Intrinsic connectivity networks in the self- and other referential processing,” Front. Hum. Neurosci., 14, 579703 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., and Rudych, P. D., “How self-appraisal is mediated by the brain,” Front. Hum. Neurosci., 15, 700046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., et al., “Task-positive and task-negative networks in major depressive disorder: A combined fMRI and EEG study,” J. Affect. Disord., 235, 211–219 (2018).

    Article  PubMed  Google Scholar 

  • Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., et al., “Task-positive and task-negative networks and their relation to depression: EEG beamformer analysis,” Behav. Brain Res., 306, 160–169 (2016).

    Article  PubMed  Google Scholar 

  • Knyazev, G. G., Slobodskaya, H. R., and Wilson, G. D., “Comparison of the construct validity of the Gray–Wilson Personality Questionnaire and the BIS/BAS scales,” Personal. Individ. Differ., 37, 1565–1582 (2004b).

    Article  Google Scholar 

  • Legrand, D. and Ruby, P., “What is self-specific? Theoretical investigation and critical review of neuroimaging results,” Psychol. Rev., 116, 252–282 (2009).

    Article  PubMed  Google Scholar 

  • Ma, Y. N., Li, B. F., Wang, C. B., et al., “5-HTTLPR polymorphism modulates neural mechanisms of negative self-reflection,” Cereb. Cortex, 24, 2421–2429 (2014).

    Article  PubMed  Google Scholar 

  • Markowitsch, H. J., “Differential contribution of right and left amygdala to affective information processing,” Behav. Neurol., 11, No. 4, 233–244 (1998).

    Article  PubMed  Google Scholar 

  • Morin, A. and Michaud, J., “Self-awareness and the left inferior frontal gyrus: Inner speech use during self-related processing,” Brain Res. Bull., 74, 387–396 (2007).

    Article  PubMed  Google Scholar 

  • Murphy, F. C., Nimmo-Smith, I., and Lawrence, A. D., “Functional neuroanatomy of emotions: A meta-analysis,” Cogn. Affect. Behav. Neurosci., 3, No. 3, 207–233 (2003).

    Article  PubMed  Google Scholar 

  • Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V., “Beyond mindreading: multi-voxel pattern analysis of fMRT data,” Trends. Cogn. Sci., 10, 424–430 (2006).

    Article  PubMed  Google Scholar 

  • Northoff, G. and Bermpohl, F., “Cortical midline structures and the self,” Trends Cogn. Sci., 8, 102–107 (2004).

    Article  PubMed  Google Scholar 

  • Northoff, G., Heinzel, A., de Greck, M., et al., “Self-referential processing in our brain A meta-analysis of imaging studies on the self,” Neuro-Image, 31, 440–457 (2006).

    PubMed  Google Scholar 

  • Ocklenburg, S., Peterburs, J., and Mundorf, A., “Hemispheric asymmetries in the amygdala: A comparative primer,” Prog. Neurobiol., 214, 102283 (2022).

    Article  PubMed  Google Scholar 

  • Pereira, F., Mitchell, T., and Botvinick, M., “Machine learning classifiers and fMRT: a tutorial overview,” NeuroImage, 45, 199–209 (2009).

    Article  Google Scholar 

  • Pfeifer, J. H., Lieberman, M. D., and Dapretto, M., “’I know who you are but what am I?!’: Neural bases of self- and social knowledge retrieval in children and adults,” J. Cogn. Neurosci., 19, 1323–1337 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Phelps, E. A., O’Connor, K. J., Gatenby, J. C., et al., “Activation of the left amygdala to a cognitive representation of fear,” Nat. Neurosci., 4, No. 4, 437–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Qin, P. and Northoff, G., “How is our self related to midline regions and the default-mode network,” NeuroImage, 57, 1221–1233 (2011).

    Article  PubMed  Google Scholar 

  • Rao, H. Y., Gillihan, S. J., Wang, J. J., et al., “Genetic variation in serotonin transporter alters resting brain function in healthy individuals,” Biol. Psychiatry, 62, 600–606 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schrouff, J., Rosa, M. J., et al., “PRoNTo: Pattern Recogni tion for Neuroimaging Toolbox,” Neuroinformatics, 11, No. 3, 319–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soch, J., Deserno, L., Assmann, A., et al., “Inhibition of information flow to the default mode network during self-reference versus reference to others,” Cereb. Cortex, 27, 3930–3942 (2017).

    PubMed  Google Scholar 

  • Turk, D. J., Heatherton, T. F., Macrae, C. N., et al., “Out of contact, out of mind: the distributed nature of the self,” Ann. N.Y. Acad. Sci., 1001, 65–78 (2003).

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al., “Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain,” Neuro-Image, 15, No. 1, 273–289 (2002).

    CAS  PubMed  Google Scholar 

  • van Buuren, M., Walsh, R. J., Sijtsma, H., et al., “Neural correlates of selfand other-referential processing in young adolescents and the effects of testosterone and peer similarity,” NeuroImage, 219, 117060 (2020).

    Article  PubMed  Google Scholar 

  • Vanderwal, T., Hunyadi, E., Grupe, D. W., et al., “Self, mother and abstract Other: an fMRI study of reflective social processing,” Neuroimage, 41, 1437–1446 (2008).

    Article  PubMed  Google Scholar 

  • Vogeley, K. and Gallagher, S., “The self in the brain,” in: The Oxford Handbook of the Self, Gallagher, S (ed.), Oxford University Press, Oxford (2011), pp. 111–136.

    Google Scholar 

  • Wager, T. D., Phan, K. L., Liberzon, I., and Taylor, S. F., “Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging,” NeuroImage, 19, No. 3, 513–531 (2003).

    Article  PubMed  Google Scholar 

  • Watson, D., Clark, L. A., and Harkness, A. R., “Structures of personality and their relevance to psychopathology,” J. Abnormal Psychol., 103, 18–31 (1994).

    Article  CAS  Google Scholar 

  • Worsley, K. J., Marrett, S., Neelin, P., et al., “A unified statistical approach or determining significant signals in images of cerebral activation,” Hum. Brain Mapp., 4, 58–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Zald, D. H., “The human amygdala and the emotional evaluation of sensory stimuli,” Brain Res. Rev., 41, No. 1, 88–123 (2003).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Knyazev.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 73, No. 2, pp. 242–255, March–April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, G.G., Savostyanov, A.N., Rudych, P.D. et al. Use of Machine Learning Methods to Analyze Patterns of Brain Activity during Assessment of the Self and Others. Neurosci Behav Physi 53, 1210–1218 (2023). https://doi.org/10.1007/s11055-023-01517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01517-2

Keywords

Navigation