Skip to main content
Log in

Coherence in the EEG Theta1 Range in the State of Relative Rest and during Testing of Attention in Subjects with Different Levels of Trait Anxiety

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Anxiety has a significant impact on the effectiveness of cognitive activity, which may be due to the characteristic features of the organization of voluntary and involuntary attention in individuals with different levels of anxiety. Objectives: to use coherence analysis of the EEG θ1 range (4–6 Hz) to study functional cortical connections in a state of relative rest and when performing an attention test in subjects with different levels of trait anxiety. EEG θ1 band coherence was analyzed in subjects (43 subjects, men aged 19–21 years) with low, medium, and high levels of trait anxiety (TA, as defined by Spielberger) in three experimental situations: a state of relative rest with the eyes closed, the initial condition before the test (with the eyes open), and during the test (the Gorbov red-black table test). Subjects with high TA in the state of relative rest displayed lower right-hemisphere EEG θ1 coherence in the system of interactions, with a focus in the temporal lead. In the initial state, with the eyes open, and when performing the test, individuals with high LA showed high between-hemisphere EEG θ1 coherence. The greatest lability in the structure of coherence interactions in the EEG θ1 range was observed in subjects with intermediate TA, who showed an increase predominantly in between-hemisphere coherence in most areas of the cortex during the test as compared with the initial state. Individuals with high TA were characterized by relative inertness in the structure of coherence interactions in the EEG θ1 range at the various stages of the study. These results indicate that trait anxiety is one of the factors modulating the organization of neurocognitive networks, both in a state of relative rest and during testing of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aftanas, L. I., Brak, I. V., Reva, N. V., and Pavlov, S. V., “Oscillatory systems of the brain and individual variability of the cardiac defensive reflex in humans,” Ros. Fiziol. Zh., 99, No. 11, 1342–1356 (2013).

    CAS  Google Scholar 

  • Al-Ezzi, A., Kamel, N., Faye, I., and Gunaseli, E., “Review of EEG, ERP, and brain connectivity estimators as predictive biomarkers of social anxiety disorder,” Front. Psychol., 11, 730 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Angst, J., Sellaro, R., Merikangas, K. R., and Endicott, J., “The epidemiology of perimenstrual psychological symptoms,” Acta Psychiatr. Scand., 104, 110–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Basar, E., Schurmann, M., and Sakowitz, O., “The selectively distributed theta system: functions,” Int. J. Psychophysiol., 39, No. 2, 197–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bazanova, O. M., Kondratenko, A. V., Kuz’minova, O. I., et al., “Efficiency of cognitive activity and psycho-emotional stress in different phases of the menstrual cycle,” Ros. Fiziol. Zh., 99, No. 7, 820–829 (2013).

  • Bressler, S. L. and Menon, V., “Large-scale brain networks in cognition: emerging methods and principles,” Trends Cogn. Sci., 14, No. 6, 277–290 (2010).

    Article  PubMed  Google Scholar 

  • Bressler, S. L. and Tognoli, E., “Operational principles of neurocognitive networks,” Int. J. Psychophysiol., 60, No. 2, 139–148 (2006).

    Article  PubMed  Google Scholar 

  • Clayton, M. S., Yeung, N., and Kadosh, R. C., “The roles of cortical oscillations in sustained attention,” Trends Cogn. Sci., 19, No. 4, 188–195 (2015).

    Article  PubMed  Google Scholar 

  • Danilova, N. N., “Orientational-exploratory activity,” in: Psychophysiology, Aleksandrov, Yu. I. (ed.), Piter, St. Petersburg (2022), pp. 214–223.

  • Danilova, N. N., Psychophysiology, Aspekt-Press, Moscow (1999), pp. 55–93.

    Google Scholar 

  • Dzhebrailova, T. D., Korobeinikova, I. I., Karatygin, N. A., and Dudnik, E. N., “ Spectral coherence characteristics of theta-1 and theta-2 EEG activity during human cognitive activity,” Zh. Vyssh. Nerv. Deyat., 68, No. 3, 327–339 (2018).

    Google Scholar 

  • Dzhebrailova, T. D., Korobeinikova, I. I., Karatygin, N. A., et al., “Dynamics of EEG spectral characteristics in individuals with different levels of trait anxiety in cognitive activity,” Fiziol. Cheloveka, 47, No. 1, 20–30 (2021).

    Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., and Calvo, M. G., “Anxiety and cognitive performance: attentional control theory,” Emotion, 7, No. 2, 336–356 (2007).

    Article  PubMed  Google Scholar 

  • Fellrath, J., Mottaz, A., Schnider, A., et al., “Theta-band functional connectivity in the dorsal fronto-parietal network predicts goal-directed attention,” Neuropsychologia, 92, 20–30 (2016).

    Article  PubMed  Google Scholar 

  • Fiebelkorn, I. C. and Kastner, S., “A rhythmic theory of attention,” Trends Cogn. Sci., 23, No. 2, 87–101 (2019).

    Article  PubMed  Google Scholar 

  • Francis, A. N., Bhojraj, T. S., Prasad, K. M., et al., “Abnormalities of the corpus callosum in non-psychotic high-risk offspring of schizophrenia patients,” Psychiatry Res., 191, No. 1, 9–15 (2011).

    Article  PubMed  Google Scholar 

  • Gribanov, A. V., Kozhevnikova, I. S., Dzhos, Yu. S., and Nekhoroshkova, A. N., “Spontaneous and induced electrical activity of the brain at high anxiety levels,” Ekol. Cheloveka, 1, 39–47 (2013).

    Google Scholar 

  • Grzhibovskii, A. M., Ivanov, S. V., and Gorbatova, M. A., “ Comparison of quantitative data from three or more independent samples using Statistica and SPSS software: parametric and non-parametric tests,” Nauka Zdravookhr., 5, 5 (2016).

    Google Scholar 

  • Grzhibovskii, A. M., Ivanov, S. V., and Gorbatova, M. A., “Comparison of quantitative data from three or more independent samples using Statistica and SPSS software: parametric and non-parametric tests,” Nauka Zdravookhr., 4, 5 (2016).

    Google Scholar 

  • Hanaoka, A., Kikuchi, M., and Komuro, R., “EEG coherence analysis in never-medicated patients with panic disorder,” Clin. EEG Neurosci., 36, No. 1, 42–48 (2005).

    Article  PubMed  Google Scholar 

  • Heckhausenn, Kh., Motivation and Activity [Russian translation], Piter, St. Petersburg; Smysl, Moscow (2003), 2nd ed.

  • Helfrich, R. F., Fiebelkorn, I. C., Szczepanski, S. M., et al., “Neural mechanisms of sustained attention are rhythmic,” Neuron, 99, 854–865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatova, Yu. P., Makarova, I. I., Zenina, O. Yu., and Aksenova, A. V., “Modern aspects of the study of functional interhemispheric symmetries of the brain (literature review),” Ekol. Cheloveka, No. 9, 30–39 (2016).

    Google Scholar 

  • Imperatori, C., Farina, B., Adenzato, M., et al., “Default mode network alterations in individuals with high-trait-anxiety: An EEG functional connectivity study,” J. Affect. Disord., 246, No. 1, 611–618 (2019).

    Article  PubMed  Google Scholar 

  • Ivanova, G. P., Gorobets, L. N., Litvinov, A. V., et al., “The role of progesterone and its metabolites in the regulation of brain functions,” Zh. Nevrol. Psikhiatr., 5, 129–137 (2018).

    Article  Google Scholar 

  • Jaiswal, S., Tsai, S., Juan, C., et al., “Low delta and high alpha power are associated with better conflict control and working memory in high mindfulness, low anxiety individuals,” Soc. Cogn. Affect. Neurosci., 14, No. 6, 645–655 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karelin, A. A., The Great Encyclopedia of Psychological Tests, Eksmo, Moscow (2007).

    Google Scholar 

  • Ketenci, S. and Kayikcioglu, T., “Investigation of theta rhythm effect in detection of finger movement,” J. Exp. Neurosci., 13, 1179069519 828737 (2019).

  • Klimesch, W., “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Rev., 29, 169–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kovyazina, M. S. and Balashova, E. Yu., Interhemisphere Interaction in Normal and Abnormal Development: Cerebral Mechanisms and Psychological Characteristics. Guidelines for Functional Interhemispheric Asymmetries, Nauchnyi Mir, Moscow (2009), Chpt. 7, pp. 185–206.

  • Machinskaya, R. I., Kurganskii, A. V., and Lomakin, D. I., “Age-related changes in the functional organization of the cortical links of the regulatory systems of the brain in adolescents. Analysis of resting neural networks in EEG source space,” Fiziol. Cheloveka, 45, No. 5, 5–19 (2019).

    Google Scholar 

  • Machinskaya, R. I., Rozovskaya, R. I., Kurganskii, A. V., and Pechenkova, E. V., “Corticocortical functional interaction during retention of emotionally colored images in working memory. Analysis of EEG theta rhythm coherence in the space of sources,” Fiziol. Cheloveka, 42, No. 3, 56–73 (2016).

    CAS  PubMed  Google Scholar 

  • Mitrofanov, A. A., Computer System for Analysis and Topographic Mapping of Electrical Activity of the Brain Using the Brainsys Neurometric EEG Data Bank. Description of Use. System Operator’s Manual. System Programmer’s Manual, Medical Science Company Statokin, Moscow (2017).

  • Mysin, I. E., Functions of the hippocampal theta rhythm,” Zh. Vyssh. Nerv. Deyat., 70, No. 3, 314–325 (2020).

    Google Scholar 

  • Pessoa, L., “Understanding emotion with brain networks,” Curr. Opin. Behav. Sci., 19, 19–25 (2018).

    Article  PubMed  Google Scholar 

  • Petersen, S. E. and Posner, M. I., “The attention system of the human brain: 20 years after,” Annu. Rev. Neurosci., 35, 73–89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda, J., “The functional significance of mu rhythms: translating ‘seeing’ and ‘hearing’ into ‘doing’,” Brain Res. Rev., 50, 57–68 (2005).

    Article  PubMed  Google Scholar 

  • Rebreikina, A. B., Larionova, E. V., and Varlamov, A. A., “Evoked changes in the rhythmic activity of the brain during the processing of visually presented target, non-target and unfamiliar words,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 92–104 (2015).

    CAS  Google Scholar 

  • Saunders, A., Kirk, I. J., and Waldie, K. E., “Hemispheric coherence in ASD with and without comorbid ADHD and anxiety,” Biomed. Res. Int., 2016, Art. ID 4267842 (2016).

  • Sauseng, P., Hoppe, J., Klimesch, W., et al., “Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range,” Eur. J. Neurosci., 25, No. 2, 587 (2007).

  • Sauseng, P., Klimesch, W., Heise, K. F., et al., “Brain oscillatory substrates of visual short-term memory capacity,” Curr. Biol., 19, No. 21, 1846–1852 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Schoenberg, P. L. A., “Linear and nonlinear EEG-based functional networks in anxiety disorders,” Adv. Exp. Med. Biol., 1191, 35–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Sperl, M. F., Panitz, C., Rosso, I. M., et al., “Fear extinction recall modulates human frontomedial theta and amygdala activity,” Cereb. Cortex, 29, No. 2, 701–715 (2019).

    Article  PubMed  Google Scholar 

  • Spielberger, C. D., Ritterband, L. M., Sydeman, S. J., et al., “Assessment of emotional states and personality traits: measuring psychological vital signs,” in: Clinical Personality Assessment: Practical Approaches, Butcher, J. N. (ed.), Oxford University Press, New York (1995).

  • Sudakov, K. V., Dzhebrailova, T. D., Korobeinikova, I. I., and Karatygin, N. A., “Geometric images of coherence relationships of biopotentials of different EEG frequency ranges in the dynamics of purposeful human activity,” Ros. Fiziol. Zh., 99, No. 6, 706–718 (2013).

    CAS  Google Scholar 

  • “The Gorbov ‘red and black tables’ method,” in: Almanakh of Psychological Tests, Moscow (1995), pp. 117–118.

  • Van Rullen, R., “Attention Cycles,” Neuron, 99, No. 4, 632–634 (2018).

    Article  Google Scholar 

  • Venerina, Ya. A., Dzhebrailova, T. D., Karatygin, N. A., and Budnikov, M. Yu., “Spectral characteristics of the EEG and the concentration of hormones in saliva in individuals with different personal anxiety during cognitive activity,” Psikhich. Zdorov., 8, 3–12 (2021).

  • Womelsdorf, T., Johnston, K., Vinck, M., and Everling, S., “Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors,” Proc. Natl. Acad. Sci. USA, 107, No. 11, 5248–5253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing, M., Tadayonnejad, R., MacNamara, A., et al., “Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder,” NeuroImage Clin., 13, 24–32 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Dzhebrailova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhebrailova, T.D., Korobeinikova, I.I., Karatygin, N.A. et al. Coherence in the EEG Theta1 Range in the State of Relative Rest and during Testing of Attention in Subjects with Different Levels of Trait Anxiety. Neurosci Behav Physi 53, 1190–1201 (2023). https://doi.org/10.1007/s11055-023-01515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01515-4

Keywords

Navigation