We provide here a brief outline of data on color vision in animals and humans, along with the history and methods used in studying it. Results from basic research in this area obtained using adaptive optics and scanning laser ophthalmoscopy (AOSLO) in combination with densitometry, phase-sensitive optical coherence tomography (AO-PSOCT), and calcium imaging (Ca2+ imaging) are described. These methods provided the first in vivo evidence for the mosaic of cones in the human retina, allowing maps of the locations of cones of three different types (L, M, S) to be built and human color perception in response to stimulation of single cones to be investigated.
Similar content being viewed by others
References
Ahnelt, P. K. and Kolb, H., “The mammalian photoreceptor mosaic-adaptive design,” Prog. Retin. Eye Res., 19, No. 6, 711–777 (2000), https://doi.org/10.1016/S1350-9462(00)00012-4.
Allison, W. T., Barthel, L. K., Skebo, K. M., et al., “Ontogeny of cone photoreceptor mosaics in zebrafish,” J. Comp. Neurol., 518, No. 20, 4182–4195 (2010), https://doi.org/10.1002/cne.22447.
Arrese, C. A., Beazley, L. D., and Neumeyer, C., “Behavioural evidence of marsupial trichromacy,” Curr. Biol., 16, R193–R194 (2006), https://doi.org/10.1016/j.cub.2006.02.036.
Arrese, C. A., Hart, N. S., Thomas, N., et al., “Trichromacy in Australian marsupials,” Curr. Biol., 12, No. 8, 657–660 (2002), 1016/S0960-9822(02)00772-8.
Baden, T. and Osorio, D., “The retinal basis of vertebrate color vision,” Annu. Rev. Vis. Sci., 5, 177–200 (2019), https://doi.org/10.1146/annurev-vision-091718-014926.
Baden, T., “Circuit mechanisms for colour vision in zebrafish,” Rev. Curr. Biol., 31, R807–R820 (2021), https://doi.org/10.1126/sciadv.abj6815.
Baden, T., Euler, T., and Berens, P., “Understanding the retinal basis of vision across species,” Nat. Rev. Neurosci., 21, No. 1, 5–20 (2020), https://doi.org/10.1038/s41583-019-0242-1.
Baden, T., Schubert, T., Chang, L., et al., “A tale of two retinal domains: Near-Optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution,” Neuron, 80, No. 5, 1206–1217 (2013), https://doi.org/10.1016/j.neuron.2013.09.030.
Baraas, R. C., Carroll, J., Gunther, K. L., et al., “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A, 24, No. 5, 1438–1447 (2007), https://doi.org/10.1364/josaa.24.001438.
Bilotta, J. and Saszik, S., “The zebrafish as a model visual system,” Int. J. Dev. Neurosci., 19, No. 7, 621–629 (2001), https://doi.org/10.1016/s0736-5748(01)00050-8.
Bongard, M. M. and Smirnov, M. S., “Spectral sensitivity curves of receivers associated with single fibers of the frog optic nerve,” Biofizika, 2, No. 3, 336–342 (1957).
Bongard, M. M. and Smirnov, M. S., “The four-dimensionality of the color space in humans,” Dokl. Akad. Nauk SSSR, 108, No. 3, 447–449 (1956).
Bongard, M. M. and Smirnov, M. S., “The ‘Skin’ vision” of Rosa Kuleshova,” Biofizika, 10, No. 1, 48–54 (1965).
Bongard, M. M. and Smirnov, M. S., “Visual colorimetry by a substitution method (a new colorimeter system for the study of human color vision),” Biofizika, 2, No. 1, 119–123 (1957).
Bongard, M. M., “Colorimetry in Animals,” Dokl. Akad. Nauk SSSR, 103, No. 2, 239–242 (1955).
Bowmaker, J. K. and Dartnall, H. J., “Visual pigments of rods and cones in a human retina,” J. Physiol., 298, 501–511 (1980), https://doi.org/10.1113/jphysiol.1980.sp013097.
Bowmaker, J. K., “Evolution of colour vision in vertebrates,” Eye (Lond.), 12, 541–547 (1998), https://doi.org/10.1038/eye.1998.143.
Bowmaker, J. K., Microspectrophotometry of vertebrate photoreceptors: A brief review,” Vision Res., 24, No. 11, 1641–1650 (1984), https://doi.org/10.1016/0042-6989(84)90322-5.
Boycott, B. B., Dowling, J. E., and Kolb, H., “Organization of the primate retina: light microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 255, 109–184 (1969), https://doi.org/10.1098/rstb.1969.0004.
Campbell, F. W. and Rushton, W. A. H., “Measurement of the scotopic pigment in the living human eye,” J. Physiol., 130, No. 1, 131–147 (1955), https://doi.org/10.1113/jphysiol.1955.sp005399.
Carroll, J., Neitz, M., Hofer, H., et al., “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA, 101, No. 22, 8461–8466 (2004), https://doi.org/10.1073/Proc. Natl. Acad. Sci. USA,.0401440101.
Collin, S. P. and Trezise, A. E., “The origins of colour vision in vertebrates,” Clin. Exp. Optom., 87, No. 4–5, 217–223 (2004), https://doi.org/10.1111/j.1444-0938.2004.tb05051.x
Curcio, C. A., Allen, K. A., et al., “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol., 312, No. 4, 610–624 (1991), https://doi.org/10.1002/cne.903120411.
Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E., “Human photoreceptor topography,” J. Comp. Neurol., 292, No. 4, 497–523 (1990), https://doi.org/10.1002/cne.902920402.
Dacey, D. M. and Packer, O. S., “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol., 13, No. 4, 421–427 (2003), https://doi.org/10.1016/s0959-4388(03)00103-x.
Dacey, D. M., “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci., 23, 743–775 (2000), https://doi.org/10.1146/annurev.neuro.23.1.743.
Dacey, D. M., “Primate retina: cell types, circuits and color opponency,” Prog. Retin. Eye Res., 18, No. 6, 737–763 (1999), https://doi.org/10.1016/s1350-9462(98)00013-5.
Danilova, M. V. and Mollon, J. D., “Bongard and Smirnov on the tetrachromacy of extra-foveal vision,” Vision Res., 195, 107952 (2022), https://doi.org/10.1016/j.visres.2021.08.007.
Dartnall, H. J. A., Bowmaker, J. K., and Mollon, J. D., “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. Lond. B. Biol. Sci, 220, No. 1218, 115–130 (1983), https://doi.org/10.1098/rspb.1983.0091.
Dominy, N. J. and Lucas, P. W., “Ecological importance of trichromatic vision to primates,” Nature, 410, No. 6826, 363–366 (2001), https://doi.org/10.1038/35066567.
Dowling, J. E. and Boycott, B. B., “Organization of the primate retina: electron microscopy,” Proc. R. Soc. Lond. B. Biol. Sci, 166, No. 1002, 80–111 (1966), https://doi.org/10.1098/rspb.1966.0086.
Dulai, K. S., von Dornum, M., Mollon, J. D., and Hunt, D. M., “The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates,” Genome Res., 9, 629–638 (1999), https://doi.org/10.1101/gr.9.7.629.
Engstrom, K., “Cone types and cone arrangement in the retina of some cyprinids,” Acta Zool., 41, No. 3, 277–295 (1960), https://doi.org/10.1111/j.1463-6395.1960.tb00481.
Estévez, O. and Spekreijse, H., “The ‘silent substitution’ method in visual research,” Vision Res., 22, 681–69 (1982), https://doi.org/10.1016/0042-6989(82)90104-3.
Field, G. D., Gauthier, J. L., Sher, A., et al., “Functional connectivity in the retina at the resolution of photoreceptors,” Nature, 467, No. 7316, 673–677 (2010), https://doi.org/10.1038/nature09424.
Gehring, W. J. and Ikeo, K., “Pax 6: mastering eye morphogenesis and eye evolution,” Trends Genet., 15, No. 9, 371–377 (1999), https://doi.org/10.1016/S0168-9525(99)01776.
Gill, J. S., Moosajee, M., and Dubis, A. M., “Cellular imaging of inherited retinal diseases using adaptive optics,” Eye, 33, 1683–1698 (2019), https://doi.org/10.1038/s41433-019-0474-3.
Govardovskii, V. I., Astakhova, L. A., and Firsov, M. L., “Specificity of physiological and biochemical mechanisms of excitation and adaptations of retinal cones,” Sens. Sistemy, 29, No. 4, 296–308 (2015).
Govardovskii, V. I., Fyhrquist, N., Reuter, T., et al., “In search of the visual pigment template,” Vis. Neurosci., 17, 509–528 (2000), 10. 1017/S0952523800174036.
Hampson, K. M., “Adaptive optics and vision,” J. Mod. Optics, 55, No. 21, 3425–3467 (2008), https://doi.org/10.1080/09500340802541777.
Hart, N. S., Partridge, J. C., Cuthill, I. C., and Bennett, A. T., “Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.),” J. Comp. Physiol., A186, No. 4, 375–387 (2000), https://doi.org/10.1007/s003590050437.
Hartridge, H., “Cluster formation by the foveal cones,” J. Physiol., 15, No. 5, 105 (1946).
Hendrickson, A., “Organization of the adult primate fovea,” in: Macular Degeneration, Penfold, P. L. and Provis, J. M. (eds.), Springer, Heidelberg, Berlin (2005), https://doi.org/10.1007/3-540-26977-0_1.
Henriques, L. D., Hauzman, E., Bonci, D. M. O., et al., “Uniform trichromacy in Alouatta caraya and Alouatta seniculus: behavioural and genetic colour vision evaluation,” Front. Zool., 18, 36 (2021), https://doi.org/10.1186/s12983-021-00421-0.
Hillmann, D., Spahr, H., Pfäffle, C., et al., “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA, 113, No. 46, 13138–13143 (2016), https://doi.org/10.1073/pnas.1606428113.
Hofer, H., Carroll, J., Neitz, J., et al., “Organization of the human trichromatic cone mosaic,” J. Neurosci., 19, No. 42, 9669–9679 (2005), https://doi.org/10.1523/JNEUROSCI.2414-05.2005.
Hunt, D. M., Dulai, K. S., Cowing, J. A., et al., “Molecular evolution of trichromacy in primates,” Vision Res., 38, No. 21, 3299–3306 (1998), https://doi.org/10.1016/s0042-6989(97)00443-4.
Jacobs, G. H. and Deegan, J. F. D. I., “Uniformity of colour vision in Old World monkeys,” Proc. Biol. Sci., 266, No. 1432, 2023–2028 (1999), https://doi.org/10.1098/rspb.1999.0881.
Jacobs, G. H., “Evolution of colour vision in mammals,” Phil. Trans. R. Soc. B., 364, No. 1531, 2957–2967 (2009), https://doi.org/10.1098/rstb.2009.0039.
Jacobs, G. H., “Losses of functional opsin genes, short-wavelength cone photopigments, and color vision – a significant trend in the evolution of mammalian vision,” Vis. Neurosci., 30, No. 1–2, 39–53 (2013), https://doi.org/10.1017/S0952523812000429.
Jacobs, G. H., Neitz, J., and Deegan, J. F., “Retinal receptors in rodents maximally sensitive to ultraviolet light,” Nature, 353, 655–656 (1991), https://doi.org/10.1038/353655a0.
Jacobs, G. H., Neitz, M., and Neitz, J., “Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate,” Proc. R. Soc. Lond B., 263, No. 1371, 705–710 (1996), https://doi.org/10.1098/rspb.1996.0105.
Kalamkarov, G. R. and Ostrovskii, M. A., Molecular Mechanisms of Visual Reception, Nauka, Moscow (2002).
Keeler, C. R., “The ophthalmoscope in the lifetime of Hermann von Helmholtz,” Arch. Ophthalmol., 120, No. 2, 194–201 (2002), https://doi.org/10.1001/archopht.120.2.194.
Kling, A., Field, G. D., Brainard, D. H., and Chichilnisky, E. J., “Probing computation in the primate visual system at single-cone resolution,” Annu. Rev. Neurosci., 42, 169–186 (2019), https://doi.org/10.1146/annurevneuro-070918-050233.
Kondrashev, S. L. and Orlov, O. Yu., “Colorimetric study of color vision in the common frog,” Vestn. Mosk. Univ. Ser. 6 Biol. Pochvoved., No. 4, 107–110 (1975).
Lakowski, R., “Theory and practice of colour vision testing: A Review. Part 2,” Br. J. Ind. Med., 26, No. 4, 265–288 (1969), https://doi.org/10.1136/oem.26.4.265.
Lee, B. B., “Paths to colour in the retina,” Clin. Exp. Optom, 87, 239–248 (2004), https://doi.org/10.1111/j.1444-0938.2004.tb05054.x.
Levenson, D. H., Ponganis, P. J., Crognale, M. A., et al., “Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter,” J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol., 192, No. 8, 833–843 (2006), https://doi.org/10.1007/s00359-006-0121-x.
Li, P. H., Field, G. D., Greschner, M., et al., “Retinal representation of the elementary visual signal,” Neuron, 81, No. 1, 130–139 (2014), https://doi.org/10.1016/j.Neuron.2013.10.043.
Li, Y. N., Tsujimura, T., Kawamura, S., and Dowling, J. E., “Bipolar cell-photoreceptor connectivity in the zebrafish (Danio rerio) retina,” J. Comp. Neurol., 520, No. 16, 3786–3802 (2012), https://doi.org/10.1002/cne.23168.
Maksimova, E. M., Aliper, A. T., Damyanovich, I. Z., et al., “Ganglion cells with background activity in the fish retina and their possible function in visual scene evaluation,” Ros. Fiziol. Zh., 106, No. 4, 486–503 (2020), https://doi.org/10.31857/S0869813920040044.
Marc, R. E., “The structure of vertebrate retinas,” in: The Retinal Basis of Vision, Toyoda, J. (ed.), Elsevier, Amsterdam (1999), pp. 3–19.
Marks, W. B., “Visual pigments of single goldfish cones,” J. Physiol., 178, No. 1, 14–32 (1965), https://doi.org/10.1113/jphysiol.1965.sp007611.
Maximov, V., “Colour vision in early vertebrates,” Physiol. Pharmacol. Acta, 34, No. 2, 343–349 (1998).
Maximov, V., “Environmental factors which may have led to the appearance of colour vision,” Philos. Trans. R. Soc. Lond. B, 355, 1239–1242 (2000), https://doi.org/10.1098/rstb.2000.0675.
Mazokhin-Porshnyakov, G. A., “ Colorimetric proof of trichromasia in bees (using bumblebees as an example),” Biofizika, 7, No. 2, 211–217 (1962).
Mazokhin-Porshnyakov, G. A., “Colorimetric study of the properties of vision in dragonflies (an electrophysiological study),” Biofizika, 4, No. 4, 427–436 (1959).
McGregor, J. E., Yin, L., Yang, Q., et al., “Functional architecture of the foveola revealed in the living primate,” PLoS One, 13, No. 11, e0207102 (2018), https://doi.org/10.1371/journal.pone.0207102.
Merino, D. and Loza-Alvarez, P., “Adaptive optics scanning laser ophthalmoscope imaging: technology update,” Clin. Ophthalmol., 10, 743–755 (2016), https://doi.org/10.2147/OPTH.S64458.
Mollon, J. D. and Bowmaker, J. K., “The spatial arrangement of cones in the primate fovea,” Nature, 360, No. 6405, 677–679 (1992), https://doi.org/10.1038/360677a0.
Movshon, A., “Animal models for visual neuroscience,” J. Vis., 14, No. 15, 8 (2014), https://doi.org/10.1167/14.15.8.
Nathans, J., Thomas, D., and Hogness, D. S., “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science, 232, No. 4747, 193–202 (1986), https://doi.org/10.1126/science.2937147.
Nyuberg, N. D., “Paradoxes of color vision,” Priroda, No. 8, 53–59 (1960).
Orlov, O. Yu. and Byzov, A. L., “A colorimetric study of vision in cephalopods (Cephalopoda),” Dokl. Akad. Nauk. SSSR, 139, No. 3, 723–725 (1961).
Orlov, O. Yu. and Maksimova, E. M., “ On the role of intracone light filters (the color vision mechanism in lizards and turtles),” Dokl. Akad. Nauk. SSSR, 154, No. 2, 463–466 (1964).
Orlov, O. Yu. and Maximova, E. M., “S-potential sources as excitation pools,” Vision Res., 5, 573–582 (1965), https://doi.org/10.1016/0042-6989 (65)90032-5).
Orlov, O. Yu., “Physiological bases of color vision in humans,” in: Clinical Visual Physiology. Essays, Shamshinova, A. M. (ed.), MBN, Moscow (2006), 3rd ed., pp. 290–340.
Ostrovskii, M. A. and Govardovskii, V. I., “Mechanisms of photoreception in vertebrates,” in: The Physiology of Vision, Nauka, Moscow (1992), Chapter 1, p. 5–59.
Ovchinnikov, Yu. A., Abdulaev, N. G., Feigina, N. Yu., et al., “Complete amino acid sequence of visual rhodopsin,” Bioorgan. Khim., 8, No. 10, 1424–1427 (1982).
Peichl, L. and Moutairou, K., “Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia),” Eur. J. Neurosci., 10, No. 8, 2586–2594 (1998), https://doi.org/10.1046/j.1460-9568.1998.00265.x.
Peichl, L., “Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle?., Anat. Rec. A. Discov. Mol. Cell. Evol. Biol., 287, No. 1, 1001–1012 (2005), https://doi.org/10.1002/ar.a.20262.
Peichl, L., Behrmann, G., and Kröger, R., “For whales and seals the ocean is not blue: a visual pigment loss in marine mammals,” Eur. J. Neurosci., 13, 1520–1528 (2001), https://doi.org/10.1046/j.0953-816x.2001.01533.x.
Podugol’nikova, T. A. and Maksimov, V. V., “Mosaic of photoreceptors and nerve elements of the fish retina,” Sens. Sistemy, 178–196 (1977).
Podugol’nikova, T. A. and Maksimov, V. V., “Regularity of the spatial structure of the receptor and nerve layers of the retina of teleost fish: Light microscopy,” Zool. Zh., LII, No. 4, 541–551 (1973).
Polyak, S. L., The Retina, University of Chicago Press, Chicago (1941).
Provis, J. M., Dubis, A. M., Maddess, T., and Carroll, J., “Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone,” Prog. Retin. Eye Res., 35, 63–81 (2013), https://doi.org/10.1016/j.preteyeres.2013.01.005.
Qiu, Y., Zhao, Z., Klindt, D., et al., “Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations,” Curr. Biol., 31, No. 15, 3233–3247 (2021), https://doi.org/10.1016/j.cub.2021.05.017.
Ramon-Y-Cajal, S., “La rétine des vertébrés,” Cellule, 9, 121–255 (1892).
Roorda, A. and Williams, D. R., “The arrangement of the three cone classes in the living human eye,” Nature, 397, No. 6719, 520–522 (1999), https://doi.org/10.1038/17383.
Roorda, A., Metha, A. B., Lennie, P., and Williams, D. R., “Packing arrangement of the three cone classes in primate retina,” Vision Res., 41, No. 10-11, 1291–1306 (2001), https://doi.org/10.1016/s0042-6989(01)00043-8.
Roorda, A., Romero-Borja, F., Donnelly, W. J., III, et al., “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express, 10, No. 9, 405–412 (2002), https://doi.org/10.1364/OE.10.000405.
Sabesan, R., Hofer, H. J., and Roorda, A., “Characterizing the human cone photoreceptor mosaic via dynamic photopigment densitometry,” PLoS One, 10, No. 12, e0144891 (2015),https://doi.org/10.1371/journal.phone.0144891
Sabesan, R., Schmidt, B. P., Tuten, W. S., and Roorda, A., “The elementary representation of spatial and color vision in the human retina,” Sci. Adv., 2, No. 9, e1600797 (2016), https://doi.org/10.1126/sciadv.1600797.
Schmidt, B. P., Sabesan, R., Tuten, W. S., et al., “Sensations from a single M-cone depend on the activity of surrounding S-cones,” Sci. Rep., 8, 8561 (2018), https://doi.org/10.1038/s41598-018-26754-1.
Silveira, L. C. L., Saito, C. A., Filho, M. da S., et al., “Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology,” PLoS One, 9, No. 11, e113321 (2014), https://doi.org/10.1371/journal.pone.0113321.
Sincich, L. C., Zhang, Y., Tiruveedhula, P., et al., “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci., 12, No. 8, 967–969 (2009), https://doi.org/10.1038/nn.2352.
Smirnov, M. C., “ Measurement of wave aberrations in the human eye,” Biofizika, 6, No. 6, 687–703 (1961).
Solomon, S. G. and Lennie, P., “The machinery of colour vision,” Nat. Rev. Neurosci., 8, 276–286 (2007), https://doi.org/10.1038/nrn2094.
Stieb, S. M., de Busserolles, F., Carleton, K. L., et al., “A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos,” Sci. Rep., 9, 16459 (2019), https://doi.org/10.1038/s41598-019-52297-0.
Thoreson, W. B. and Dacey, D. M., “Diverse cell types, circuits, and mechanisms for color vision in the vertebrate retina,” Physiol. Rev., 99, No. 3, 1527–1573 (2019), https://doi.org/10.1152/physrev.00027.2018.
Toomey, M. B. and Corbo, J. C., “Evolution, development and function of vertebrate cone oil droplets,” Front. Neural Circuits, 11, 97 (2017), https://doi.org/10.3389/fncir.2017.00097.
Wagner-Schuman, M., Neitz, J., Rha, J., et al., “Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions,” Vision Res., 50, No. 23, 2396–2402 (2010), https://doi.org/10.1016/j.Visres.2010.09.015.
Walls, G. L., The Vertebrate Eye and Its Adaptive Radiation, Cranbrook Institute of Science, Bloomfield Hills, Michigan(1942), https://doi.org/10.5962/bhl.title.7369.
Wiesel, T. N. and Hubel, D. H., “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol., 29, No. 6, 1115–1156 (1966), https://doi.org/10.1152/jn.1966.29.6.1115.
Wikler, K. C. and Rakic, P., “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci., 10, No. 10, 3390–3401 (1990), https://doi.org/10.1523/JNEUROSCI.10-10-03390.1990.
Wilkie, D., Hunt, D. M., and Bowmaker, J. K., “Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences,” Vision Res., 39, No. 17, 2801–2815 (1999), https://doi.org/10.1016/s0042-6989(99)00023-1.
Williams, D. R., “Imaging single cells in the living retina,” Vision Res., 51, No. 13, 1379–1396 (2011), https://doi.org/10.1016/j.visres.2011.05.002.
Williams, D. R., Sekiguchi, N., et al., “The cost of trichromacy for spatial vision,” in: From Pigments to Perception: Advances in Understanding Visual Processes, Valberg, A. and Lee, B. B. (eds.), Plenum Press, New York (1991), pp. 11–22, https://doi.org/10.1007/978-1-4615-3718-2_2.
Yin, L., Masella, B., Dalkara, D., et al., “Imaging light responses of foveal ganglion cells in the living macaque eye,” J. Neurosci., 34, No. 19, 6596–6605 (2014), https://doi.org/10.1523/JNEUROSCI.4438-13.2014.
Yokoyama, S. and Yokoyama, R., “Adaptive evolution of photoreceptors and visual pigments in vertebrates,” Ann. Rev. Ecol. Sys., 27, No. 1, 543–567 (1996), https://doi.org/10.1146/annurev.ecolsys.27.1.543.
Yokoyama, S., “Molecular evolution of color vision in vertebrates,” Gene, 300, No. 1-2, No. 69–78 (2002), https://doi.org/10.1016/s0378-1119(02) 00845-4.
Yokoyama, S., “Molecular evolution of vertebrate visual pigments,” Prog. Retin. Eye Res., 19, No. 4, 385–419 (2000), https://doi.org/10.1016/s1350-9462(00)00002-1.
Zeki, S. and Marini, L., “Three cortical stages of colour processing in the human Brain,” Brain, 121, No. 1669–1685 (1998), https://doi.org/10.1093/brain/121.9.1669.
Zhang, F., Kurokawa, K., Bernucci, M. T., et al., “Revealing how color vision phenotype and genotype manifest in individual cone cells,” Invest. Ophthalmol. Vis. Sci., 62, No. 2, Art. 8 (2021), https://doi.org/10.1167/iovs.62.2.8.
Zhang, F., Kurokawa, K., Lassoued, A., et al., “Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics,” Proc. Natl. Acad. Sci. USA, 116, No. 16, No. 7951–7956 (2019), https://doi.org/10.1371/journal.pone.0207102).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Sensornye Sistemy, Vol. 37, No. 1, pp. 17–34, January–March, 2023.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Maximova, E.M. The Contribution of Adaptive Optics to Our Understanding of the Mechanisms of Color Vision in Humans. Neurosci Behav Physi 53, 1025–1035 (2023). https://doi.org/10.1007/s11055-023-01496-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11055-023-01496-4