Skip to main content
Log in

Stepping in Decerebrated Cats at Simultaneously Different Speeds on a Split Treadmill

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The decisive role of sensory input in the initiation and modulation of locomotion has been demonstrated repeatedly. One approach to studying this input is provided by the split treadmill paradigm. We report here a comparative analysis of the walking of decerebrated cats on a split treadmill with belts moving not only at different speeds (differing by a factor of three), but also in different directions (forward and backward). The two limbs were shown to operate reciprocally in this mode of locomotion, as did the flexor and extensor muscles of each limb. Two main stepping strategies were identified: for each step of the limb walking on the slow treadmill belt, the limb walking on the fast belt carried out either one step (the 1:1 strategy) or two steps (the 1:2 strategy); strategies could alternate. The results obtained here suggest persistence of the integration of the locomotor networks of the two limbs despite significant mismatch of their sensory inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akay, T., McVea, D. A., Tachibana, A., and Pearson, K. G., “Coordination of fore and hind leg stepping in cats on a transversely-split treadmill,” Exp. Brain Res., 75, No. 2, 211–222 (2006).

    Article  Google Scholar 

  • Buford, J. A., Zernicke, R. F., and Smith, J. L., “Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics,” J. Neurophysiol., 64, No. 3, 745–755 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. T. and Bastian, A. J., “Adaptation reveals independent control networks for human walking,” Nat. Neurosci., 10, No. 8, 1055–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H., Grillner, S., Halbertsma, J., and Rossignol, S., “The locomotion of the low spinal cat. II. Interlimb coordination,” Acta Physiol. Scand., 108, No. 3, 283–295 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Frigon, A., “The neural control of interlimb coordination during mammalian locomotion,” J. Neurophysiol., 117, No. 6, 2224–2241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frigon, A., Desrochers, E., Thibaudier, Y., et al., “Left-right coordination from simple to extreme conditions during split-belt locomotion in the chronic spinal adult cat,” J. Physiol., 595, No. 1, 341–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko, Y., Musienko, P., Bogacheva, I., et al., “Propriospinal bypass of the serotonergic system that can facilitate stepping,” J. Neurosci., 29, No. 17, 5681–5689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbertsma, J., “The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings,” Acta Physiol. Scand. Suppl., 521, 1–76 (1983).

    CAS  PubMed  Google Scholar 

  • Kim, S. A., Heinze, K. G., and Schwille, P., “Fluorescence correlation spectroscopy in living cells,” Nat. Methods, 4, No. 11, 963–973 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kuczynski, V., Telonio, A., Thibaudier, Y., et al., “Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat,” J. Physiol., 595, No. 17, 5987–6006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulagin, A. S. and Shik, M. L., “Interaction of symmetrical limbs in controlled locomotion,” Biofizika, 15, No. 1, 164–170 (1970).

    CAS  PubMed  Google Scholar 

  • Lyakhovetskii, V., Merkulyeva, N., Gorskii, O., and Musienko, P., “Simultaneous bidirectional hindlimb locomotion in decerebrate cats,” Sci. Rep., 11, No. 1, 3252 (2021).

  • Maxwell, D. J. and Soteropoulos, D. S., “The mammalian spinal commissural system: properties and functions,” J. Neurophysiol., 123, No. 1, 4–21 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Merkulyeva, N., Veshchitskii, A., Gorsky, O., et al., “Distribution of spinal neuronal networks controlling forward and backward locomotion,” J. Neurosci., 38, No. 20, 4695–4707 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musienko, P., Courtine, G., Tibbs, J. E., et al., “Somatosensory control of balance during locomotion in decerebrated cat,” J. Neurophysiol., 107, No. 8, 2072–2082 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson, K. G. and Duysens, J., “Function of segmental reflexes in the control of stepping in cockroaches and cats,” in: Neural Control of Locomotion. Advances in Behavioral Biology, Herman, R. M. et al. (eds.), Springer, Boston, MA (1976), pp. 519–537.

  • Reisman, D. S., Block, H. J., and Bastian, A. J., “Interlimb coordination during locomotion: What can be adapted and stored?” J. Neurophysiol., 94, No. 4, 2403– 2415 (2005).

    Article  PubMed  Google Scholar 

  • Rossignol, S., Dubuc, R., and Gossard, J.-P., “Dynamic sensorimotor interactions in locomotion,” Physiol. Rev., 86, No. 1, 89–154 (2006).

    Article  PubMed  Google Scholar 

  • Shapkova, E. Y., “Spinal locomotor capability revealed by electrical stimulation of the lumbar enlargement in paraplegic patients,” in: Progress in Motor Control, Latash, M. and Levin, M. (eds.) Human Kinetics Publishers (2004), pp. 253–289.

  • Shkorbatova, P. Y., Lyakhovetskii, V. A., Merkulyeva, N. S., et al., “Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae,” Anat. Rec., 302, No. 9, 1628–1637 (2019).

    Article  Google Scholar 

  • Thelen, E., Ulrich, B. D., and Niles, D., “Bilateral coordination in human infants: stepping on a split-belt treadmill,” J. Exp. Psychol. Hum. Percept. Perform., 13, No. 3, 405–410 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Veshchitskii, A. A., Lyakhovetskii, V. A., Gorskii, O. V., et al., “What can bidirectional stepping can tell about central pattern generators?” Zh. Vyssh. Nerv. Deyat., 72, No. 2, 248–262 (2022).

    Google Scholar 

  • Yanagihara, D., Udo, M., Kondo, I., and Yoshida, T., “A new learning paradigm: adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats,” Neurosci. Res., 18, No. 3, 241– 244 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. F., Lamont, E. V., and Pang, M. Y., “Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans,” J. Neurosci., 25, No. 29, 6869–6876 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Merkulyeva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 73, No. 1, pp. 76–87, January–February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakhovetskii, V.A., Shkorbatova, P.Y., Gorskii, O.V. et al. Stepping in Decerebrated Cats at Simultaneously Different Speeds on a Split Treadmill. Neurosci Behav Physi 53, 873–881 (2023). https://doi.org/10.1007/s11055-023-01480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01480-y

Keywords

Navigation