Skip to main content
Log in

Cognitive Dysfunction in COVID-19

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We present here an analysis of non-Russian publications illustrating changes in concepts relating to the etiology, pathogenesis, main pathophysiological syndromes, and clinical manifestations of nervous system damage in COVID-19 over 2.5 years of the pandemic. The current view of COVID-19 is that it is a pathology with a tendency to multiple organ damage, in which the symptoms of nervous system damage not only determine the severity of the disease, but also indirectly affect the development of somatic manifestations, such as distress syndrome. Particular attention is paid to analysis of publications summarizing available information on the incidence of cognitive deficit in the acute and post-COVID periods and their risk factors and prospects for recovery. The mechanisms probably underlying cognitive deficit are considered. Despite a significant number of observations and publications, some of the mechanisms of nervous system damage in COVID-19 and the selectivity of the cognitive deficit pattern remain unclear. Contemporary publications lack information on long term prognostication of the state of the cognitive domain, which is an important argument for research to continue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mao, L., Jin, H., Wang, M., et al., “Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China,” JAMA Neurol., 77, No. 6, 683–690 (2020), https://doi.org/10.1001/jamaneurol.2020.1127.

    Article  PubMed  Google Scholar 

  2. Hamming, I., Timens, W., Bulthuis, M. L., et al., “Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis,” J. Pathol., 203, 631–637 (2004), https://doi.org/10.1002/path.1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Daly, J. L., Simonetti, B., Klein, K., et al., “Neuropilin-1 is a host factor for SARS-CoV-2 infection,” Science, 370, 861–865 (2020), https://doi.org/10.1126/science.abd3072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qi, J., Zhou, Y., Hua, J., et al., “The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to COVID-19 infection,” BioRxiv (2020), 2004.2016.045690, https://doi.org/10.3390/ijerph18010284.

  5. Matschke, J., Lütgehetmann, M., Hagel, C., et al., “Neuropathology of patients with covid-19 in Germany: a post-mortem case series,” Lancet Neurol., 19, No. 11, 919–929 (2020), https://doi.org/10.1016/S1474-4422(20)30308-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ehrengruber, M. U., Ehler, E., Billeter, M. A., and Naim, H. Y., “Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion,” J. Virol., 76, 5720–5728 (2002), https://doi.org/10.1128/jvi.76.11.5720-5728.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brann, D. H., Tsukahara, T., Weinreb, C., et al., “Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia,” Sci. Adv., 6, eabc5801 (2020), https://doi.org/10.1126/sciadv.abc5801.

  8. Chen, R., Yu, J., Wang, K., et al., “The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain,” BioRxiv (2020), 2004.2007.030650, https://doi.org/10.3389/fneur.2020.573095.

  9. Xia, S., Liu, M., Wang, C., et al., “Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion,” Cell Res., 30, 343–355 (2020), https://doi.org/10.1038/s41422-020-0305-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Puelles, V. G., Lütgehetmann, M., Lindenmeyer, M. T., et al., “Multiorgan and renal tropism of sars-cov-2,” N. Engl. J. Med., 383, No. 6, 590–592 (2020), https://doi.org/10.1056/NEJMc2011400.

    Article  PubMed  Google Scholar 

  11. Dubé, M., Le Coupanec, A., Wong, A. H. M., et al., “Axonal transport enables neuron-to-neuron propagation of human coronavirus oc43,” J. Virol., 92, e00404–e418 (2018), https://doi.org/10.1128/JVI.00404-18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jin, Y., Ji, W., Yang, H., et al., “Endothelial activation and dysfunction in COVID-19: From basic mechanisms to potential therapeutic approaches,” Signal Transduct. Target Ther., 5, 293 (2020), https://doi.org/10.1038/s41392-020-00454-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stefano, G. B., Ptacek, R., Ptackova, H., et al., “Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival,” Med. Sci. Monit., 27, e930886 (2021), https://doi.org/10.12659/MSM.930886.

  14. Huang, C., Wang, Y., Li, X., et al., “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,” Lancet, 395, 497–506 (2020), https://doi.org/10.1016/S0140-6736(20)30183-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. The Great British Intelligence Test, https://www.bbc.co.uk/programmes/articles/5tFHwWMgg9VbrHT9kvGlFqd/the-great-britishintelligence-test.

  16. Hampshirea, A., Trendera, W., Chamberlainb, S. R., et al., “Cognitive deficits in people who have recovered from COVID-19,” EClinical-Medicine, 39, 101044 (2021), https://doi.org/10.1016/j.eclinm.2021.101044.

  17. Tabacof, L., Tosto-Mancuso, J., Wood, J., et al., “Post-acute COVID-19 syndrome negatively impacts physical function, cognitive function, health-related quality of life, and participation,” Am. J. Phys. Med. Rehabil., 101, No. 1, 48–52 (2022), https://doi.org/10.1097/PHM.0000000000001910.

    Article  PubMed  Google Scholar 

  18. Lamontagne, S. J., Winters, M. F., Pizzagalli, D. A., and Olmstead, M. C., “Post-acute sequelae of COVID-19: Evidence of mood and cognitive impairment,” Brain Behav. Immun. Health, 17, 100347 (2021), https://doi.org/10.1016/j.bbih.2021.100347.

  19. Evans, R. A., McAuley, H., Harrison, E. M., et al., “Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID, a UK multicentre, prospective cohort study,” Lancet Respir. Med., 9, No. 11, 1275–1287 (2021), https://doi.org/10.1016/S2213-2600(21)00383-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, Y.-H., Wang, Y.-R., Wang, Q.-H., et al., “Post-infection cognitive impairments in a cohort of elderly patients with COVID-19,” Mol. Neurodegener., 16, No. 1, 48 (2021), https://doi.org/10.1186/s13024-021-00469-w.

  21. Ferrucci, R., Dini, M., Rosci, C., et al., “One-year cognitive follow-up of COVID-19 hospitalized patients,” Eur. J. Neurol., 29, No. 7, 2006–2014 (2022), https://doi.org/10.1111/ene.15324.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cristillo, V., Pilotto, A., Piccinelli, S. C., et al., “Premorbid vulnerability and disease severity impact on Long-COVID cognitive impairment,” Aging Clin. Exp. Res., 34, No. 1, 257–260 (2022), https://doi.org/10.1007/s40520-021-02042-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Duca, A., Pivo, S., Focà, E., et al., “Calculated decisions: Brescia-COVID Respiratory Severity Scale (BCRSS). Algorithm,” Emerg. Med. Pract., 22, No. 5, Supplement, CD1–CD2 (2020).

  24. Hollocks, M. J., Brookes, R. L., Morris, R. G., and Markus, H. S., “The Brief Memory and Executive Test (BMET): A cognitive screening tool to detect and differentiate vascular cognitive impairment and Alzheimer’s disease,” Int. J. Geriatr. Psychiatry, 33, No. 2, 273–279 (2018), https://doi.org/10.1002/gps.4787.

    Article  Google Scholar 

  25. Cecchetti, G., Agosta, F., Canu, E., et al., “Cognitive, EEG, and MRI features of COVID 19 survivors: a 10 month study,” J. Neurol., 34, No. 8, 1–13 (2022), https://doi.org/10.1007/s00415-022-11047-5.

    Article  CAS  Google Scholar 

  26. Crivelli, L., Calandri, I., Corvalan, N., et al., “Cognitive consequences of COVID-19: results of a cohort study from South America,” Arq. Neuropsiquiatr., 80, No. 3, 240–247 (2022), https://doi.org/10.1590/0004-282X-ANP-2021-0320.

    Article  PubMed  Google Scholar 

  27. Jaywant, A., Vanderlind, W. M., Alexopoulos, G. S., et al., “Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19,” Neuropsychopharmacology, 46, No. 13, 2235–2240 (2021), https://doi.org/10.1038/s41386-021-00978-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alemanno, F., Houdayer, E., Parma, A., et al., “COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID rehabilitation unit experience,” PLoS One, 16, No. 2, e0246590 (2021), https://doi.org/10.1371/journal.pone.0246590.

  29. Miskowiak, K. W., Johnsen, S., Sattler, S. M., et al., “Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables,” Eur. Neuropsychopharmacol., 46, 39–48 (2021), https://doi.org/10.1016/j.euroneuro.2021.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, C., Haupert, S. R., Zimmermann, L., et al., “Global prevalence of post COVID-19 condition or long COVID: A meta-analysis and systematic review,” J. Infect. Dis., 226, No. 9, 1593–2607 (2022), https://doi.org/10.1093/infdis/jiac136.

    Article  CAS  PubMed  Google Scholar 

  31. Ceban, F., Ling, S., Lui, L. M. W., et al., “Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis,” Brain Behav. Immun., 101, 93–135 (2022), https://doi.org/10.1016/j.bbi.2021.12.020.

    Article  CAS  PubMed  Google Scholar 

  32. Badenoch, J. B., Rengasamy, E. R., Watson, C., et al., “Persistent neuropsychiatric symptoms after COVID-19: a systematic review and meta-analysis,” Brain Commun., 4, No. 1, fcab297 (2021), https://doi.org/10.1093/braincomms/fcab297.

  33. Mattioli, F., Stampatori, C., Righetti, F., et al., “Neurological and cognitive sequelae of Covid 19: a four month follow up,” J. Neurol., 268, No. 12, 4422–4428 (2021), https://doi.org/10.1007/s00415-021-10579-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Del Brutto, O. H., Rumbea, D. A., Recalde, B. Y., and Mera, R. M., “Cognitive sequelae of long COVID may not be permanent: A prospective study,” Eur. J. Neurol., 29, No. 4, 1218–1221 (2022), https://doi.org/10.1111/ene.15215.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kicherova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 11, pp. 7–10, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kicherova, O.A., Reikhert, L.I., Akhmetyanov, M.A. et al. Cognitive Dysfunction in COVID-19. Neurosci Behav Physi 53, 818–821 (2023). https://doi.org/10.1007/s11055-023-01474-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01474-w

Keywords

Navigation