Skip to main content
Log in

Genetic Polymorphism of Cytokines IL-1β, IL-4, and TNF-α as a Factor Modifying the Influence of Adverse Childhood Experiences on the Symptoms of Schizophrenia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. Working from the hypothesis that activation of the immune system is one of the mechanisms whereby early environmental factors influence the onset and course of schizophrenia, we studied the effects of the interaction of adverse childhood experiences (ACE) and genotypes at the polymorphic loci rs16944 of the IL1B gene, rs2243250 of the IL4 gene, and rs1800629 of the TNF-α gene on the severity of different groups of schizophrenia symptoms. Materials and methods. The cohort consisted of 546 patients with schizophrenia spectrum disorders. ACE was detected by analysis of medical records and a questionnaire completed by the patients. A five-factor Positive and Negative Syndrome Scale (PANSS) model with a built-in two-factor model of the negative syndrome was used. Results. The interaction of ACE and TNF-α was found to have a significant effect on the cognitive disorganization factor after adjusting for multiple comparisons, with discrimination of carriers of different genotypes in the group without ACE (pFDR < 0.018; \( {\upeta}_p^2 \) = 0.03). The interaction of ACE and genotype was found to have a significant effect on the cognitive disorganization syndrome (F = 5.87; p = 0.003; \( {\upeta}_p^3 \) = 0.03). Stereotyped thinking and volitional disorder identified on the PANSS showed the strongest correlations with the cognitive disorganization factor (ro = 0.84 and ro = 0.82, respectively) and the most significant differences depending on the interaction of genotype and ACE (Kruskal–Wallis test, H = 12.28, p = 0.006 and H = 12.79, p = 0.005, respectively). Conclusions. ACE modifies the relationship between the pathogenesis of schizophrenia and the rs1800629 polymorphic locus located in the TNF-α gene promoter, which is also an enhancer of 60 more genes located in the major histocompatibility complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Radua, V. Ramella-Cravaro, J. P. A. Ioannidis, et al., “What causes psychosis? An umbrella review of risk and protective factors,” World Psychiatry, 17, No. 1, 49–66 (2018), https://doi.org/10.1002/wps.20490.

    Article  PubMed  PubMed Central  Google Scholar 

  2. N. Robinson and S. E. Bergen, “Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: Current knowledge and future directions,” Front. Genet., 12, 686666 (2021), https://doi.org/10.3389/fgene.2021.686666.

    Article  PubMed  PubMed Central  Google Scholar 

  3. K. A. Kalmakis and G. E. Chandler, “Adverse childhood experiences: towards a clear conceptual meaning,” J. Adv. Nurs., 70, No. 7, 1489–1501 (2014), https://doi.org/10.1111/jan.12329.

    Article  PubMed  Google Scholar 

  4. T. O. Afifi, S. Salmon, I. Garcés, et al., “Confirmatory factor analysis of adverse childhood experiences (ACEs) among a community based sample of parents and adolescents,” BMC Pediatr., 20, No. 1, 178 (2020), https://doi.org/10.1186/s12887-020-02063-3.

  5. D. Popovic, A. Schmitt, L. Kaurani, et al., “Childhood trauma in schizophrenia: Current findings and research perspectives,” Front. Neurosci., 13, e274 (2019), https://doi.org/10.3389/fnins.2019.00274.

    Article  Google Scholar 

  6. A. Danese and J. S. Lewis, “Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma?” Neuropsychopharmacology, 42, No. 1, 99–114 (2017), https://doi.org/10.1038/npp.2016.198.

    Article  CAS  PubMed  Google Scholar 

  7. A. L. Comer, M. Carrier, M. È. Tremblay, and A. Cruz-Martín, “The inflamed brain in schizophrenia: The convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation,” Front. Cell. Neurosci., 14, 274 (2020), https://doi.org/10.3389/fncel.2020.00274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Morozova, Y. Zorkina, K. Pavlov, et al., “Associations of genetic polymorphisms and neuroimmune markers with some parameters of frontal lobe dysfunction in schizophrenia,” Front. Psychiatry, 12, 655178 (2021), https://doi.org/10.3389/fpsyt.2021.655178.

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. Reale, E. Costantini, and N. H. Greig, “Cytokine imbalance in schizophrenia. From research to clinic: potential implications for treatment,” Front. Psychiatry, 12, 536257 (2021), https://doi.org/10.3389/fpsyt.2021.536257.

    Article  PubMed  PubMed Central  Google Scholar 

  10. B. Misiak, F. Stramecki, Ł. Gawęda, et al., “Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a Systematic review,” Mol. Neurobiol., 55, No. 6, 5075–5100 (2018), https://doi.org/10.1007/s12035-017-0708-y.

    Article  CAS  PubMed  Google Scholar 

  11. M. Jahid, Rehan-Ul-Haq, D. Chawla, et al., “Association of polymorphic variants in IL1B Gene with secretion of IL-1β protein and inflammatory markers in north Indian rheumatoid arthritis patients,” Gene, 641, 63–67 (2018), https://doi.org/10.1016/j.gene.2017.10.051.

    Article  CAS  PubMed  Google Scholar 

  12. L. J. Rosenwasser, D. J. Klemm, J. K. Dresback, et al., “Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy,” Clin. Exp. Allergy, 25, Suppl. 2, 74–78 (1995), https://doi.org/10.1111/j.1365-2222.1995.tb00428.x.

  13. U. Zafar, S. Khaliq, H. U. Ahmad, et al., “Serum profile of cytokines and their genetic variants in metabolic syndrome and healthy subjects: a comparative study,” Biosci. Rep., 39, No. 2, BSR20181202 (2019), https://doi.org/10.1042/BSR20181202.

  14. W. J. Kent, C. W. Sugnet, T. S. Furey, et al., “The human genome browser at UCSC,” Genome Res., 12, No. 6, 996–1006 (2002), https://doi.org/10.1101/gr.229102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. GTEx Consortium, “Genetic effects on gene expression across human tissues,” Nature, 550, No. 7675, 204–213 (2017), https://doi.org/10.1038/nature24277.

  16. M. Haeussler, A. S. Zweig, C. Tyner, et al., “The UCSC Genome Browser database: 2019 update,” Nucleic Acids Res., 47, Iss. D1, D853–D858 (2019), https://doi.org/10.1093/nar/gky1095.

  17. The Schizophrenia Working Group of the Psychiatric Genomics Consortium, S. Ripke, J. T. R. Walters, and M. C. O’Donovan, “Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia,” medRxiv (2020), 10.1101/2020.09.12.20192922.

  18. The 1000 Genomes Project Consortium, “A global reference for human genetic variation,” Nature, 526, 68–74 (2015), https://doi.org/10.1038/nature15393.

  19. K. Esih, K. Goričar, Z. Rener-Primec, et al., “CARD8 and IL1B polymorphisms influence MRI brain patterns in newborns with hypoxic-ischemic encephalopathy treated with hypothermia,” Antioxidants (Basel), 10, No. 1, 96 (2021), https://doi.org/10.3390/antiox10010096.

  20. M. Tartter, C. Hammen, J. E. Bower, et al., “Effects of chronic interpersonal stress exposure on depressive symptoms are moderated by genetic variation at IL6 and IL1β in youth,” Brain Behav. Immun., 46, 104–111 (2015), https://doi.org/10.1016/j.bbi.2015.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. T. Baune, C. Konrad, D. Grotegerd, et al., “Tumor necrosis factor gene variation predicts hippocampus volume in healthy individuals,” Biol. Psychiatry, 72, No. 8, 655–662 (2012), https://doi.org/10.1016/j.biopsych.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  22. M. V. Alfimova, G. I. Korovaitseva, T. V. Lezheiko, and V. E. Golimbet, “Interaction effects of season of birth and cytokine genes on schizotypal traits in the general population,” Schizophr. Res. Treatment, 2017, 5763094 (2017), https://doi.org/10.1155/2017/5763094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Lim, O. H. Peh, Z. Yang, et al., “Large-scale evaluation of the Positive and Negative Syndrome Scale (PANSS) symptom architecture in schizophrenia,” Asian J. Psychiatr., 62, 102732 (2021), https://doi.org/10.1016/j.ajp.2021.102732.

    Article  PubMed  Google Scholar 

  24. V. E. Golimbet, G. I. Korovaitseva, and T. V. Lezheiko, et al., “Polymorphisms of interleukin-1 (IL-1B) and interleukin receptor antagonist (IL-1RN) genes in schizophrenia,” Zh. Nevrol. Psikhiatr., 112, No. 12, 63–68 (2012).

    Google Scholar 

  25. M. V. Alfi mova, V. E. Golimbet, and G. I. Korovaitseva, et al., “Effect of cytokine genes and season of birth on personality,” Zh. Vyssh. Nerv. Deyat., 117, No. 9, 82–87 (2017), https://doi.org/10.17116/jnevro20171179182-87.

  26. JASP Team, JASP (Version 0.16) [Computer software] (2021), https://jasp-stats.org.

  27. T. Rietkerk, M. P. Boks, I. E. Sommer, et al., “The genetics of symptom dimensions of schizophrenia: Review and meta-analysis,” Schizophr. Res., 102, No. 1–3, 197–205 (2008), https://doi.org/10.1016/j.schres.2008.01.023.

    Article  CAS  PubMed  Google Scholar 

  28. F. V. Rijsdijk, I. I. Gottesman, P. McGuffin, et al., “Heritability estimates for psychotic symptom dimensions in twins with psychotic disorders,” Am. J. Med. Genet. B Neuropsychiatr. Genet., 156, No. 1, 89–98 (2011), https://doi.org/10.1002/ajmg.b.31145.

    Article  Google Scholar 

  29. S. E. Legge, A. G. Cardno, J. Allardyce, et al., “Associations between schizophrenia polygenic liability, symptom dimensions, and cognitive ability in schizophrenia,” JAMA Psychiatry, 78, No. 10, 1143–1151 (2021), https://doi.org/10.1001/jamapsychiatry.2021.1961.

    Article  PubMed  PubMed Central  Google Scholar 

  30. B. Decourt, D. K. Lahiri, and M. N. Sabbagh, “Targeting tumor necrosis factor alpha for Alzheimer’s disease,” Curr. Alzheimer Res., 14, No. 4, 412–425 (2017), https://doi.org/10.2174/1567205013666160930110551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. R. Dauvermann and G. Donohoe, “The role of childhood trauma in cognitive performance in schizophrenia and bipolar disorder – A systematic review,” Schizophr. Res. Cogn., 16, 1–11 (2019), https://doi.org/10.1016/j.scog.2018.11.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Alfimova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 9, pp. 110–117, September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfimova, M.V., Korovaitseva, G.I., Gabaeva, M.V. et al. Genetic Polymorphism of Cytokines IL-1β, IL-4, and TNF-α as a Factor Modifying the Influence of Adverse Childhood Experiences on the Symptoms of Schizophrenia. Neurosci Behav Physi 53, 524–530 (2023). https://doi.org/10.1007/s11055-023-01451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01451-3

Keywords

Navigation