Skip to main content
Log in

Cross-Adaptation: from F. Z. Meerson to the Present. Part 2. Mechanisms of Cross-Adaptation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review discusses the physiological mechanisms underlying the phenomenon of cross-adaptation of humans and animals to harmful and stress factors – this is an important task, given the prospects for applying approaches to inducing cross-tolerance in the framework of adaptive and preventive medicine. The review briefly summarizes the main types of cross-adaptation to various adverse factors and the types of actions that lead to its formation. The accumulated literature and own data on the possible molecular bases underlying the formation of cross-adaptation and cross-resistance are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Astratenkova, I. I. Akhmetov, N. D. Gol’berg, and V. A. Rogozkin, “Regulation of skeletal muscle metabolism by epigenetic factors,” Ros. Fiziol. Zh., 105, No. 9, 1113 (2019).

  2. K. A. Baranova, E. A. Rybnikova, and M. O. Samoilov, “Neurotrophin BDNF is involved in the formation and prevention of post-stress psychopathologies,” Neirokhimiya, 32, No. 2, 131–131 (2015).

    Google Scholar 

  3. K. A. Baranova, E. A. Rybnikova, and M. O. Samoilov, “Dynamics of HIF-1a expression in the rat brain at different stages of the formation of experimental post-traumatic stress disorder and its correction by moderate hypoxia,” Neirokhimiya, 34, No. 2, 137–145 (2017).

    Google Scholar 

  4. M. Yu. Zenko, E. A. Rybnikova, and T. S. Glushchenko, “Expression of the neurotrophin BDNF in the hippocampus and neocortex in rats during the formation of post-stress anxiety and its correction by hypoxic postconditioning,” Morfologiya, 146, No. 5, 14–18 (2014).

    Google Scholar 

  5. M. Y. Zenko and E. A. Rybnikova, “Cross-adaptation: From Meyerson to the present day. Part 1. Adaptation, cross-adaptation, and cross-sensitization,” Usp. Fiziol. Nauk., 50, No. 4, 3 (2019).

  6. M. Y. Zenko, and E. A. Rybnikova, “The role of glucocorticoid hormones in the stress-protective effects of hypoxic postconditioning in models of depression and post-traumatic stress disorder in rats,” Zh. Vyssh. Nerv. Deyat., 70, No. 6, 825–836 (2020).

    Google Scholar 

  7. F. Z. Meerson, Adaptation Medicine: the Concept of Long-Term Adaptations, Delo, Moscow (1983).

    Google Scholar 

  8. F. Z. Meerson and M. G. Pshennikova, The Physiology of Adaptive Processes, Nauka, Moscow 1(1986).

    Google Scholar 

  9. E. A. Rybnikova, Neuroprotective Effects and Mechanisms of Hypoxic Preconditioning: Thesis for Doctorate in Biological Sciences, Pavlov Institute of Physiology (2010).

  10. M. E. Afzalpour, H. T. Chadorneshin, M. Foadoddini, and H. A. Eivari, “Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain,” Physiol. Behav., 147, 78–83 (2015).

    CAS  PubMed  Google Scholar 

  11. A. Agrawal, A. S. Jaggi, and N. Singh, “Pharmacological investigations on adaptation in rats subjected to cold water immersion stress,” Physiol. Behav., 103, 321–329 (2011).

    CAS  PubMed  Google Scholar 

  12. S. Amir and Z. Amit, “Enhanced analgesic effects of stress following chronic administration of naltrexone in rats,” Eur. J. Pharmacol., 59, 137–140 (1979).

    CAS  PubMed  Google Scholar 

  13. F. T. Amorim, I. T. Fonseca, and C. A. Machado-Moreira, “Insights into the role of heat shock proteins 72 to whole-body heat acclimation in humans,” Temperature, 2, 499–505 (2015).

    Google Scholar 

  14. A. Armario, J. M. Castellanos, and J. Balasch, “Effect of chronic noise on corticotropin function and on emotional reactivity in adult rats,” Neuroendocrinol. Lett., 6, No. 2, 121–127 (1984).

    CAS  Google Scholar 

  15. C. Balestra, K. Lambrechts, S. Mrakic-Sposta, et al., “Hypoxic and hyperoxic breathing as a complement to low-intensity physical exercise programs: a proof-of-principle study,” Int. J. Mol. Sci., 2, No. 2, 9600 (2021).

  16. A. Bali, P. K. Randhawa, and A. S. Jaggi, “Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference,” Neurosci. Biobehav. Rev., 51, 138–150 (2015).

    CAS  PubMed  Google Scholar 

  17. A. Becke, P. Müller, M. Dordevic, et al., “Daily intermittent normobaric hypoxia over 2 weeks reduces BDNF plasma levels in young adults – a randomized controlled feasibility study,” Front. Physiol., 9, 1337 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. M. Bergeron, J. Gidday, A. Yu, et al., “Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain,” Ann. Neurol., 48, 285–296 (2000).

    CAS  PubMed  Google Scholar 

  19. G. Biggio, A. Concas, S. Mele, et al., “Changes in GABAergic transmission induced by stress, anxiogenic and anxiolytic β-carbolines,” Brain Res. Bull., 19, No. 3, 301–308 (1987).

    CAS  PubMed  Google Scholar 

  20. R. Bordet, D. Deplanque, P. Maboudou, et al., “Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance,” J. Cereb. Blood Flow Metab., 20, 1190–1196 (2000).

    CAS  PubMed  Google Scholar 

  21. A. Bouchama, M. A. Aziz, S. A. Mahri, et al., “A model of exposure to extreme environmental heat uncovers the human transcriptome to heat stress,” Sci. Rep., 7, No. 1, 9429 (2017).

  22. A. F. Bruns, N. Yuldasheva, A. M. Latham, et al., “A heat-shock protein axis regulates VEGFR2 proteolysis, blood vessel development and repair,” PLoS One, 7, e48539 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Cai, D. J. Manalo, G. Wei, et al., “Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury,” Circulation, 108, 79–85 (2003).

    CAS  PubMed  Google Scholar 

  24. D. J. Calcagnetti, S. W. Fleetwood, and S. G. Holzman, “Behavioral profile of the potentiation of opioid analgesia by restraint stress,” Pharmacol. Biochem. Behav., 37, 193–199 (1990).

    CAS  PubMed  Google Scholar 

  25. L. M. Cancela, C. Bregonzio, and V. A. Molina, “Anxiolytic-like effect induced by chronic stress is reversed by naloxone pretreatment,” Brain Res. Bull., 36, 209–213 (1995).

    CAS  PubMed  Google Scholar 

  26. L. M. Cancela, S. Rossi, and V. A. Molina, “Effect of different restraint schedules on the immobility in the forced swim test: modulation by an opiate mechanism,” Brain Res. Bull., 26, 671–675 (1991).

    CAS  PubMed  Google Scholar 

  27. E. Chauhan, A. Bali, N. Singh, and A. S. Jaggi, “Pharmacological investigations on cross adaptation in mice subjected to stress immobilization,” Life Sci., 127, 98–105 (2015).

    CAS  PubMed  Google Scholar 

  28. R. E. Chipkin, M. B. Latranyi, and L. C. Lorio, “Potentiation of stress-induced analgesia (SIA) by thiorphan and its block by naloxone,” Life Sci., 31, 1189–1192 (1982).

    CAS  PubMed  Google Scholar 

  29. R. A. DeFazio, A. P. Raval, H. W. Lin, et al., “GABA synapses mediate neuroprotection after ischemic and epsilon-PKC preconditioning in rat hippocampal slice cultures,” J. Cereb. Blood Flow Metab., 29, No. 2, 375–384 (2009).

    CAS  PubMed  Google Scholar 

  30. S. Di Meo, G. Napolitano, and P. Venditti, “Mediators of physical activity protection against ROS-linked skeletal muscle damage,” Int. J. Mol. Sci., 20, No. 12, 3024 (2019).

  31. M. A. Dominguez-Sanchez, R. H. Bustos-Cruz, G. P. Velasco-Orjuela, et al., “Acute effects of high intensity, resistance, or combined protocol on the increase of level of neurotrophic factors in physically inactive overweight adults: the BrainFit Study,” Front. Physiol., 9, 741 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. R. Dringen, M. Brandmann, M. C. Hohnholt, and E. M. Blumrich, “Glutathione-dependent detoxification processes in astrocytes,” Neurochem. Res., 40, 2570–2582 (2015).

    CAS  PubMed  Google Scholar 

  33. G. P. Eising, L. Mao, G. W. Schmid-Schönbein, et al., “Effects of induced tolerance to bacterial lipopolysaccharide on myocardial infarct size in rats,” Cardiovasc. Res., 31, 73–81 (1996).

    CAS  PubMed  Google Scholar 

  34. B. R. Ely, A. T. Lovering, M. Horowitz, and C. T. Minson, “Heat acclimation and cross tolerance to hypoxia: bridging the gap beactivation tween cellular and systemic responses,” Temperature, 1, 107–114 (2014).

    Google Scholar 

  35. E. Fehrenbach, A. M. Niess, R. Veith, et al., “Changes of HSP72-expression in leukocytes are associated with adaptation to exercise under conditions of high environmental temperature,” J. Leukoc. Biol., 69, 747–54 (2001).

    CAS  PubMed  Google Scholar 

  36. A. P. Gasch, P. T. Spellman, C. M. Kao, et al., “Genomic expression programs in the response of yeast cells to environmental changes,” Mol. Biol. Cell, 11, No. 12, 4241–4257 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. J. M. Gidday, “Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning,” Front. Neurol., 6, 42 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. P. W. Gold and G. P. Chrousos, “Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states,” Mol. Psychiatry, 7, No. 3, 254–275 (2002).

    CAS  PubMed  Google Scholar 

  39. H. B. Hale, “Cross-adaptation,” Environ. Res., 2, 423–434 (1969).

    CAS  PubMed  Google Scholar 

  40. A. Hassan, B. M. Arnold, S. Caine, et al., “Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression,” PLoS One, 13, No. 5, e0197486 (2018).

  41. U. Heemann, A. Szabo, P. Hamar, et al., “Lipopolysaccharide pretreatment protects from renal ischemia/reperfusion injury: possible connection to an interleukin-6-dependent pathway,” Am. J. Pathol., 156, 287–293 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Hemani, O. Lane, S. Agarwal, et al., “Systematic review of erythropoietin (EPO) for neuroprotection in human studies,” Neurochem. Res., 46, No. 4, 732–739 (2021).

    CAS  PubMed  Google Scholar 

  43. W. A. Hiestand, F. W. Stemler, and R. L. Jasper, “Increased anoxic resistance resulting from short period heat adaptation,” Proc. Soc. Exp. Biol. Med., 88, No. 1, 94–95 (1955).

    CAS  PubMed  Google Scholar 

  44. M. Horowitz, “Heat acclimation-mediated cross-tolerance: origins in within-life epigenetics?” Front. Physiol., 8, 548 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. M. Khassaf, R. B. Child, A. McArdle, et al., “Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise,” J. Appl. Physiol., 90, 1031–1035 (2001).

    CAS  PubMed  Google Scholar 

  46. T. K. Kim, H. J. Na, W. R. Lee, et al., “Heat shock protein 70-1A is a novel angiogenic regulator,” Biochem. Biophys. Res. Commun., 469, 222–228 (2016).

    CAS  PubMed  Google Scholar 

  47. S. Klaperski, B. Von Dawans, M. Heinrichs, and R. Fuchs, “Does the level of physical exercise affect physiological and psychological responses to psychosocial stress in women?” Psychol. Sport. Exerc., 14, No. 2, 266–274 (2013).

    Google Scholar 

  48. D. Kojima, T. Nakamura, M. Banno, et al., “Head-out immersion in hot water increases serum BDNF in healthy males,” Int. J. Hyperthermia, 34, No. 6, 834–839 (2018).

    CAS  PubMed  Google Scholar 

  49. R. Kvetnansky, E. L. Sabban, and M. Palkovits, “Catecholaminergic systems in stress: structural and molecular genetic approaches,” Physiol. Rev., 89, No. 2, 535–606 (2009).

    CAS  PubMed  Google Scholar 

  50. B. J. Lee, A. Miller, R. S. James, et al., “Cross acclimation between heat and hypoxia: Heat acclimation improves cellular tolerance and exercise performance in acute normobaric hypoxia,” Front. Physiol., 7, 78 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. B. Levine and J. Stray-Gundersen, “Living high-training low: effect of moderate-altitude acclimatization with low-altitude training on performance,” J. Appl. Physiol., 83, 102–112 (1997).

    CAS  PubMed  Google Scholar 

  52. W. Liang, C. Lin, L. Yuan, et al., “Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway,” J. Neuroinflammation, 16, No. 1, 181 (2019).

  53. J. Liu, I. Ginis, M. Spatz, et al., “Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide,” Am. J. Physiol. Cell Physiol., 278, 144–153 (2000).

    Google Scholar 

  54. H. C. Lunt, M. J. Barwood, J. Corbett, and M. J. Tipton, “Crossadaptation: habituation to short repeated cold-water immersions affects the response to acute hypoxia in humans,” J. Physiol., 588, No. 18, 3605–3613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. R. T. Mallet, J. Burtscher, E. B. Manukhina, et al., “Hypoxichyperoxic conditioning and dementia,” Diagn. Manag. Dement., 745–760 (2020).

  56. A. Maloyan, L. Eli-Berchoer, G. L. Semenza, et al., “HIF-1 alpha- targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart,” Physiol. Genomics, 23, 79–88 (2005).

    CAS  PubMed  Google Scholar 

  57. J. M. Matz, K. P. LaVoi, R. J. Moen, et al., “Cold-induced heat shock protein expression in rat aorta and brown adipose tissue,” Physiol. Behav., 60, 1369–1374 (1996).

    CAS  PubMed  Google Scholar 

  58. B. S. McEwen and E. Stellar, “Stress and the individual. Mechanisms leading to disease,” Arch. Intern. Med., 153, 2093–2101 (1993).

    CAS  PubMed  Google Scholar 

  59. F. Z. Meerson, I. Yu. Malyshev, and A. V. Zamotrinsky, “Adaptive protection of the heart and stabilization of myocardial structures,” Basic Res. Cardiol., 86, 87–98 (1991).

    CAS  PubMed  Google Scholar 

  60. R. B. Mefferd, Jr. and H. B. Hale, “Effects of thermal conditioning on metabolic responses of rats to altitude,” Am. J. Physiol., 195, 735 (1958).

    CAS  PubMed  Google Scholar 

  61. M. Miranda, J. F. Morici, M. B. Zanoni, and P. Bekinschtein, “Brainderived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain,” Front. Cell. Neurosci, 13, 363 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Naghibzadeh, R. Ranjbar, M. R. Tabandeh, and A. Habibi, “Effects of two training programs on transcriptional levels of neurotrophins and glial cells population in hippocampus of experimental multiple sclerosis,” Int. J. Sports Med., 39, 604–612 (2018).

    PubMed  Google Scholar 

  63. J. T. Neumann, J. W. Thompson, A. P. Raval, et al., “Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection,” J. Cereb. Blood Flow Metab., 35, No. 1, 121–130 (2015).

    CAS  PubMed  Google Scholar 

  64. T. Ohtsuki, C. A. Ruetzler, K. Tasaki, et al., “Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons,” J. Cereb. Blood Flow Metab., 16, 1137–1142 (1996).

    CAS  PubMed  Google Scholar 

  65. E. S. Pereira, K. N. Walter, S. C. Atilio, et al., “Significant acute response of brain-derived neurotrophic factor following a session of extreme conditioning program is correlated with volume of specific exercise training in trained men,” Front. Physiol., 9, 823 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. H. P. Pfister and M. G. King, “Adaptation of the glucocorticosterone response to novelty,” Physiol. Behav., 17, No. 1, 43–46 (1976).

    CAS  PubMed  Google Scholar 

  67. R. A. Pinho, A. S. Aguiar, and Z. Radak, “Effects of resistance exercise on cerebral redox regulation and cognition: An interplay between muscle and brain,” Antioxidants, 8, No. 11, 529 (2019).

  68. J.-A. Ribeil, Y. Zermati, J. Vandekerckhove, et al., “Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1,” Nature, 445, 102–105 (2007).

    CAS  PubMed  Google Scholar 

  69. E. Rybnikova and N. Nalivaeva, “Glucocorticoid-dependent mechanisms of brain tolerance to hypoxia,” Int. J. Mol. Sci., 22, No. 15, 7982 (2021).

  70. M. G. Ryou, X. Chen, M. Cai, H. Wang, et al., “Intermittent hypoxia training prevents deficient learning-memory behavior in mice modeling Alzheimer’s disease: a pilot study,” Front. Aging Neurosci., 13, 674688 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. E. L. Sabban and L. I. Serova, “Influence of prior experience with homotypic or heterotypic stressor on stress reactivity in catecholaminergic systems,” Stress, 10, 137–143 (2007).

    CAS  PubMed  Google Scholar 

  72. R. M. Salgado, A. C. White, S. M. Schneider, et al., “A novel mechanism for cross-adaptation between heat and altitude acclimation: the role of heat shock protein 90,” Physiol. J., 2014, 1–12 (2014).

    Google Scholar 

  73. N. C. Schommer, D. H. Hellhammer, and C. Kirschbaum, “Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress,” Psychosom. Med., 65, No. 3, 450–460 (2003).

    CAS  PubMed  Google Scholar 

  74. H. Selye and E. Bajusz, “Prevention of cross-resistance to cardiotoxic agents by low chloride intake,” Am. J. Pathol., 38, 481–493 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. G. L. Semenza, “Hydroxylation of HIF-1: oxygen sensing at the molecular level,” Physiology (Bethesda), 19, 176–182 (2004).

    CAS  PubMed  Google Scholar 

  76. J. L. Simpkiss and D. P. Devine, “Responses of the HPA axis after chronic variable stress: effects of novel and familiar stressors,” Neuroendocrinol. Lett., 24, No. 1/2, 97–103 (2003).

    PubMed  Google Scholar 

  77. C. M. Stary and M. C. Hogan, “Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers,” J. Appl. Physiol., 120, 1260–1266 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. L. Taylor, A. Midgley, and B. Chrismas, “The effect of acute hypoxia on heat shock protein 72 expression and oxidative stress in vivo,” Eur. J. Appl. Physiol., 109, 849–55 (2010).

    CAS  PubMed  Google Scholar 

  79. L. Taylor, A. W. Midgley, B. Chrismas, et al., “Daily hypoxia increases basal monocyte HSP72 expression in healthy human subjects,” Amino Acids, 40, 393–401 (2011).

    CAS  PubMed  Google Scholar 

  80. A. Tetievsky and M. Horowitz, “Posttranslational modifications in histones underlie heat acclimation-mediated cytoprotective memory,” J. Appl. Physiol., 109, 1552–1561 (2010).

    CAS  PubMed  Google Scholar 

  81. A. Tetievsky, O. Cohen, L. Eli-Berchoer, et al., “Physiological and molecular evidence of heat acclimation memory: a lesson from thermal responses and ischemic cross-tolerance in the heart,” Physiol. Genomics, 34, 78–87 (2008).

    CAS  PubMed  Google Scholar 

  82. A. Tissiéres, H. K. Mitchell, and U. M. Tracy, “Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs,” J. Mol. Biol., 84, No. 3, 389–398 (1974).

    PubMed  Google Scholar 

  83. G. R. Van Loon, K. Pierzchala, A. A. Houdi, et al., “Tolerance and cross-tolerance to stress-induced increases in plasma met-enkephalin in rats with adaptively increased resting secretion,” Endocrinology, 126, No. 4, 2196–2204 (1990).

    PubMed  Google Scholar 

  84. S. Verges, S. Chacaroun, D. Godin-Ribuot, and S. Baillieul, “Hypoxic conditioning as a new therapeutic modality,” Front. Pediatr., 3, 58 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. P. F. Wang, X. Y. Xiong, J. Chen, et al., “Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment,” J. Neuroinflammation, 12, 80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. J. M. Weiss, H. I. Glazer, L. A. Pohorecky, et al., “Effects of chronic exposure to stressors on avoidance escape behavior and on brain norepinephrine,” Psychosom. Med., 37, 522–534 (1975).

    CAS  PubMed  Google Scholar 

  87. K. Yamada and T. Nabeshima, “Stress-induced behavioral responses and multiple opioid systems in the brain,” Behav. Brain Res., 67, No. 2, 133–145 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Zenko.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 53, No. 4, pp. 62–70, October–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenko, M.Y., Rybnikova, E.A. Cross-Adaptation: from F. Z. Meerson to the Present. Part 2. Mechanisms of Cross-Adaptation. Neurosci Behav Physi 53, 409–415 (2023). https://doi.org/10.1007/s11055-023-01439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01439-z

Keywords

Navigation