Skip to main content

Advertisement

Log in

Plastic Changes Induced by Motor Activity in Spinal Cord Injury

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Plastic changes in the central nervous system occurring under the influence of motor activity are regarded as the key to the successful restoration of motor functions after traumatic spinal cord injury. The identification of such changes and elucidation of their mechanisms are therefore important for the development and optimization of treatment methods aimed at maximizing post-traumatic functional recovery and minimizing possible maladaptive conditions. The aim of the present work was to review data on plastic changes in the central nervous system caused by various types of motor activity after traumatic injury to the spinal cord in humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Vissarionov, I. Yu. Solokhina, G. A. Ikoeva, et al., “Motor rehabilitation of a patient with the sequelae of spinal cord injury using non-invasive electrical stimulation of the spinal cord in combination with mechanical therapy,” Khirurg. Pozvon., 13, No. 1, 8–12 (2016).

    Google Scholar 

  2. N. P. Kareva, O. V. Shelyakina, and E. V. Pavlova, “ Perspectives of anthropomorphic robotics in the recovery of patients after spinal cord injury (literature review),” Sovrem. Prob. Nauki Obraz., No. 6, 134–145 (2018).

  3. O. V. Lanskaya and E. Yu. Andriyanova, “ Identification of signs of plasticity of the spinal motor neuron pools of the upper and lower limb muscles in players of various sports,” Ul’yanovsk. Med. Biol. Zh., No. 3, 106–113 (2014).

  4. A. N. Minakov, A. S. Chernov, D. S. Asyutin, et al., “Experimental modeling of spinal cord injury in laboratory rats,” Acta Naturae, 10, No. 3 (38), 4–10 (2018).

  5. A. G. Naryshkin, I. V. Galanin, and A. Yu. Egorov, “Controllable neuroplasticity,” Fiziol. Cheloveka, 46, No. 2, 112–120 (2020).

    Google Scholar 

  6. I. N. Novoselova, “ Etiology and clinical epidemiology of spinal cord injury (literature review),” Ross. Neurokhir. Zh., 11, No. 4, 84–92 (2019).

    Google Scholar 

  7. L. M. Nureeva, G. G. Yafarova, and T. V. Baltina, “Excitability of spinal motor neurons after spinal and spinal cord injury,” Nevrol. Vestn., 41, No. 2, 38–43 (2009).

    Google Scholar 

  8. K. I. Pavlov and V. N. Mukhin, “Physiological mechanisms of neuroplasticity as the basis of mental processes and socio-professional adaptations (part 1),” Psikhol. Psikhofiziol., 14, No. 3, 119–136 (2021).

    Google Scholar 

  9. O. G. Prudnikova, A. A. Kachesova, and S. O. Ryabykh, “ Rehabilitation of patients in the late period of spinal cord injury: a meta-analysis of literature data,” Khirurg. Pozvon., 16, No. 3, 8–16 (2019).

    Google Scholar 

  10. V. A. Smirnov and A. A. Grin’, “Regenerative methods of treating spinal cord injury. Literature review. Part 4,” Neirokhirurgiya, 22, No. 1, 83–92 (2020).

  11. O. I. Khokhlova, “Pathogenetic aspects of traumatic spinal cord injury and therapeutic perspectives (literature review),” Politravma, No. 1, 95–104 (2020).

  12. E. D. S. Alves, R. V. T. Dos Santos, F. S. de Lira, et al., “Effects of intensity-matched exercise at different intensities on inflammatory responses in able-bodied and spinal cord injured individuals,” J. Spinal Cord Med., 44, No. 6, 1–11 (2020).

  13. C. A. Angeli, M. Boakye, R. A. Morton, et al., “Recovery of overground walking after chronic motor complete spinal cord injury,” New Engl. J. Med., 379, No. 13, 1244–1250 (2018).

    PubMed  Google Scholar 

  14. L. C. Argetsinger, G. Singh, S. G. Bickel, et al., “Spinal cord injury in infancy: activity-based therapy impact on health, function, and quality of life in chronic injury,” Spinal Cord Ser. Cases, 6, No. 13, 1–9 (2020).

    Google Scholar 

  15. L. Asboth, L. Friedli, J. Beauparlant, et al., “Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion,” Nat. Neurosci., 21, 576–588 (2018).

    CAS  PubMed  Google Scholar 

  16. G. Barriere, H. Leblond, J. Provencher, and S. Rossignol, “Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries,” J. Neurosci., 28, No. 15, 3976–3987 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. N. J. Batty, A. Torres-Espín, R. Vavrek, et al., “Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats,” Exp. Neurol., 324. Art. 113136 (2020).

  18. E. Beaumont, S. Kaloustian, G. Rousseau, and B. Cormery, “Training improves the electrophysiological properties of lumbar neurons and locomotion after thoracic spinal cord injury in rats,” Neurosci. Res., No. 62, 147–154 (2008).

  19. A. L. Behrman, L. C. Argetsinger, M. T. Roberts, et al., “Activitybased therapy targeting neuromuscular capacity after pediatric-onset spinal cord injury,” Top. Spinal Cord Inj. Rehabil., 25, No. 2, 132–149 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. H. Beverungen, S. C. Klaszky, M. Klaszky, and M. P. Côté, “Rehabilitation decreases spasticity by restoring chloride homeostasis through the brain-derived neurotrophic factor-KCC2 pathway after spinal cord injury,” J. Neurotrauma, 37, 846–859 (2020).

    PubMed  PubMed Central  Google Scholar 

  21. J. N. Bilchak, G. Caron, and M. P. Côté, “Exercise-induced plasticity in signaling pathways involved in motor recovery after spinal cord injury,” Int. J. Mol. Sci., 22, No. 9, Art. 4858 (2021).

  22. J. N. Bilchak, K. Yeakle, G. Caron, et al., “Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury,” Exp. Neurol., 338, Art. 113605 (2021).

  23. M. Bonizzato and M. Martinez, “An intracortical neuroprosthesis immediately alleviates walking deficits and improves recovery of leg control after spinal cord injury,” Sci. Transl. Med., 13, No. 586, Art. eabb4422 (2021).

  24. V. S. Boyce, J. Park, F. H. Gage, and L. M. Mendell, “Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats,” Eur. J. Neurosci., 35, 221–232 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. A. R. Brown and M. Martinez, “Ipsilesional motor cortex plasticity participates in spontaneous hindlimb recovery after lateral hemisection of the thoracic spinal cord in the rat,” J. Neurosci., 38, 9977–9988 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. A. R. Brown and M. Martinez, “Chronic inactivation of the contralesional hindlimb motor cortex after thoracic spinal cord hemisection impedes locomotor recovery in the rat,” Exp. Neurol., 343, Art. 113775 (2021).

  27. B. Chen, Y. Li, B. Yu, et al., “Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations,” Cell, 174, Iss. 3, 521–535.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. M. P. Côté, G. A. Azzam, M. A. Lemay, et al., “Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury,” J. Neurotrauma, 28, 299–309 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. M. P. Côté, S. Gandhi, M. Zambrotta, and J. D. Houle, “Exercise modulates chloride homeostasis after spinal cord injury,” J. Neurosci., 34, No. 27, 8976–8987 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. M. P. Côté and J. P. Gossard, “Step training-dependent plasticity in spinal cutaneous pathways,” J. Neurosci., 24, 11, 317–11,327 (2004).

  31. M. P. Côté, A. Ménard, and J. P. Gossard, “Spinal cats on the treadmill: changes in load pathways,” J. Neurosci., 23, 2789–2796 (2003).

    PubMed  PubMed Central  Google Scholar 

  32. M. P. Côté, M. Murray, and M. A. Lemay, “Rehabilitation strategies after spinal cord injury: inquiry into the mechanisms of success and failure,” J. Neurotrauma, 34, No. 10, 1841–1857 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. G. Courtine and M. V. Sofroniew, “Spinal cord repair: advances in biology and technology,” Nat. Med., 25, 898–908 (2019).

    CAS  PubMed  Google Scholar 

  34. G. Courtine, B. Song, R. R. Roy, et al., “Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury,” Nat. Med., 14, No. 1, 69–74 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Diaz-Rıos, P. A. Guertin, and M. Rivera-Oliver, “Neuromodulation of spinal locomotor networks in rodents,” Curr. Pharm. Des., 23, 1741–1752 (2017).

    PubMed  Google Scholar 

  36. M. R. Dimitrijevic and B. A. Kakulas, “Spinal cord injuries, human neuropathology and neurophysiology,” Acta Myol., 39, No. 4, 353–358 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Duan, M. Qu, Y. Yuan, et al., “Clinical benefit of rehabilitation training in spinal cord injury: a systematic review and meta-analysis,” Spine, 46, E398–E410 (2021).

    PubMed  Google Scholar 

  38. E. A. Dugan, S. Jergova, and J. Sagen, “Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury,” Exp. Neurol., 327, Art. 113208 (2020).

  39. C. Engesser-Cesar, R. M. Ichiyama, A. L. Nefas, et al., “Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fiber growth,” Eur. J. Neurosci., 25, No. 7, 1931–1939 (2007).

    PubMed  Google Scholar 

  40. N. D. Engineer, J. R. Riley, J. D. Seale, et al., “Reversing pathological neural activity using targeted plasticity,” Nature, 470, 101–104 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. C. Y. Fang, J. L. Tsai, G. S. Li, et al., “Effects of robot-assisted gait training in individuals with spinal cord injury: a meta-analysis,” Biomed. Res. Int., 2020, Art. ID 2102785 (2020).

  42. J. W. Fawcet, T. Oohashi, and T. Pizzorusso, “The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function,” Nat. Rev. Neurosci., 20, 451–465 (2019).

    Google Scholar 

  43. M. E. Filipp, B. J. Travis, S. S. Henry, et al., “Differences in neuroplasticity after spinal cord injury in varying animal models and humans,” Neural Regen. Res., 14, 7–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. L. Filli, A. K. Engmann, B. Zorner, et al., “Bridging the gap: a reticulo- propriospinal detour bypassing an incomplete spinal cord injury,” J. Neurosci., 34, No. 40, 13399–13410 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. J. R. Flynn, L. R. Dunn, M. P. Galea, et al., “Exercise training after spinal cord injury selectively alters synaptic properties in neurons in adult mouse spinal cord,” J. Neurotrauma, 30, No. 10, 891–896 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. C. Gallegos, M. Carey, Y. Zheng, et al., “Reaching and grasping training improves functional recovery after chronic cervical spinal cord injury,” Front. Cell. Neurosci, 14, Art. 110 (2020).

  47. P. D. Ganzer, C. R. Beringer, J. S. Shumsky, et al., “Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat,” Exp. Neurol., 304, 132–142 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. M. L. Gill, P. J. Grahn, J. S. Calvert, et al., “Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia,” Nat. Med., 24, 1677–1682 (2018).

    CAS  PubMed  Google Scholar 

  49. M. G. Goldhardt, A. Andreia, G. P. Dorneles, et al., “Does a single bout of exercise impacts BDNF, oxidative stress and epigenetic markers in spinal cord injury patients?” Funct. Neurology, 34, 158–166 (2019).

    Google Scholar 

  50. Y. Goldshmit, N. Lythgo, M. P. Galea, and A. M. Turnley, “Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery,” J. Neurotrauma, 25, No. 5, 449–465 (2008).

    PubMed  Google Scholar 

  51. F. Gomez-Pinilla, Z. Ying, R. R. Roy, et al., “Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord,” J. Neurophysiol., 92, 3423–3432 (2004).

    CAS  PubMed  Google Scholar 

  52. J. P. Gossard, H. Delivet-Mongrain, M. Martinez, et al., “Plastic changes in lumbar locomotor networks after a partial spinal cord injury in cats,” J. Neurosci., 35, 9446–9455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Graziano, G. Foffani, E. B. Knudsen, et al., “Passive exercise of the hind limbs after complete thoracic transection of the spinal cord promotes cortical reorganization,” PLoS One, 8, Iss. 1, Art. e54350 (2013).

  54. S. J. Harkema, “Plasticity of interneuronal networks of the functionally isolated human spinal cord,” Brain Res. Rev., 57, No. 1, 255–264 (2008).

    PubMed  Google Scholar 

  55. S. J. Harkema, J. Hillyer, M. Schmidt-Read, et al., “Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation,” Arch. Phys. Med. Rehabil., 93, No. 9, 1588–1597 (2012).

    PubMed  Google Scholar 

  56. B. J. Hilton, and W. Tetzlaff, “A brainstem bypass for spinal cord injury,” Nat. Neurosci., 21, 457–458 (2018).

    CAS  PubMed  Google Scholar 

  57. A. S. Hofer, and M. E. Schwab, “Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation,” Curr. Opin. Neurol., 32, No. 6, 828–835 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. U. S. Hofstoetter, B. Freundl, S. M. Danner, et al., “Transcutaneous spinal cord stimulation induces temporary attenuation of spasticity in individuals with spinal cord injury,” J. Neurotrauma, 37, No. 3, 481–493 (2020).

    PubMed  Google Scholar 

  59. C. H. Hubscher, A. N. Herrity, C. S. Williams, et al., “Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury,” PLoS One, 13, No. 1, Art. e0190998 (2018).

  60. K. J. Hutchinson, F. Gomez-Pinilla, M. J. Crowe, et al., “Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats,” Brain, 127, 1403–1414 (2004).

    PubMed  Google Scholar 

  61. R. M. Ichiyama, J. Broman, R. R. Roy, et al., “Locomotor training maintains normal inhibitory influence on both alpha- and gamma-motoneurons after neonatal spinal cord transection,” J. Neurosci., 31, 26–33 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. M. T. Jurkiewicz, D. J. Mikulis, W. E. McIlroy, et al., “Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study,” Neurorehabil. Neural. Repair, 21, 527–538 (2007).

    PubMed  Google Scholar 

  63. B. A. Kakulas and C. Kaelan, “The neuropathological foundations for the restorative neurology of spinal cord injury,” Clin. Neurol. Neurosurg., 129, Suppl. 1, S1–S7 (2015).

  64. L. Khalki, K. Sadlaoud, J. Lerond, et al., “Changes in innervation of lumbar motoneurons and organization of premotor network following training of transected adult rats,” Exp. Neurol., 299, 1–14 (2018).

    PubMed  Google Scholar 

  65. M. Knikou, “Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury,” Exp. Brain Res., 228, 279–296 (2013).

    PubMed  Google Scholar 

  66. M. Knikou, A. C. Smith, and C. K. Mummidisetty, “Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury,” J. Neurophysiol., 113, 2447–2460 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. K. Kole, W. Scheenen, P. Tiesinga, and T. Celikel, “Cellular diversity of the somatosensory cortical map plasticity,” Neurosci. Biobehav. Rev., 84, 100–115 (2018).

    PubMed  Google Scholar 

  68. A. M. Laliberte, S. Goltash, N. R. Lalonde, and T. V. Bui, “Propriospinal neurons: essential elements of locomotor control in the intact and possibly the injured spinal cord,” Front. Cell. Neurosci., 13, Art. 512 (2019).

  69. K. A. Leech, and T. G. Hornby, “High-intensity locomotor exercise increases brain-derived neurotrophic factor in individuals with incomplete spinal cord injury,” J. Neurotrauma, 34, 1240–1248 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. B. E. Legg Ditterline, S. C. Aslan, D. C. Randall, et al., “Effects of respiratory training on heart rate variability and baroreflex sensitivity in individuals with chronic spinal cord injury,” Arch. Phys. Med. Rehabil., No. 99, 423–432 (2018).

  71. A. A. Leis, M. F. Kronenberg, I. Stetkarova, et al., “Spinal motoneuron excitability after acute spinal cord injury in humans,” Neurology, 47, No. 1, 231–237 (1996).

    CAS  PubMed  Google Scholar 

  72. A. N. Leszczynska, H. Majczynski, G. M. Wilczynski, et al., “Thoracic hemisection in rats results in initial recovery followed by a late decrement in locomotor movements, with changes in coordination correlated with serotonergic innervation of the ventral horn,” PLoS One, 10, Art. e0143602 (2015).

  73. X. Li, Q. Wang, and J. Ding, et al., “Exercise training modulates glutamic acid decarboxylase-65/67 expression through TrkB signaling to ameliorate neuropathic pain in rats with spinal cord injury,” Mol. Pain, 16, 1–12 (2020).

    Google Scholar 

  74. X. Li, Q. Wu, C. Xie, et al., “Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury,” Spinal Cord, 57, 65–74 (2019).

    PubMed  Google Scholar 

  75. K. Loy and F. M. Bareyre, “Rehabilitation following spinal cord injury: how animal models can help our understanding of exercise-induced neuroplasticity,” Neural Regen. Res., 14, 405–412 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. K. Loy, A. Schmalz, T. Hoche, et al., “Enhanced voluntary exercise improves functional recovery following spinal cord injury by impacting the local neuroglial injury response and supporting the rewiring of supraspinal circuits,” J. Neurotrauma, 35, 2904–2915 (2018).

    PubMed  Google Scholar 

  77. M. Macias, D. Nowicka, A. Czupryn, et al., “Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers,” BMC Neurosci., 10, Art. 144 (2009).

    Google Scholar 

  78. M. R. Marques, F. C. Nicola, E. F. Sanches, et al., “Locomotor training promotes time-dependent functional recovery after experimental spinal cord contusion,” Neuroscience, 392, 258–269 (2018).

    CAS  PubMed  Google Scholar 

  79. K. A. Moxon, A. Oliviero, J. Aguilar, and G. Foffani, “Cortical reorganization after spinal cord injury: always for good?,” Neuroscience, 283, 78–94 (2014).

    CAS  PubMed  Google Scholar 

  80. W. Mrówczyński, “Health benefits of endurance training: Implications of the brain-derived neurotrophic factor-a systematic review,” Neural Plast., 2019, Art. ID 5413067 (2019).

  81. P. Müller, Y. Duderstadt, and V. and N. G. Lessmann, “Müller, “Lactate and BDNF: key mediators of exercise induced neuroplasticity?” J. Clin. Med., 9, Iss. 4, Art. 1136 (2020).

  82. T. Nakanishi, Y. Fujita, and T. Yamashita, “Neuropilin-1-mediated pruning of corticospinal tract fibers is required for motor recovery after spinal cord injury,” Cell Death Dis., 10, Art. 67 (2019).

  83. T. Onushko, G. B. Mahtani, G. Brazg, et al., “Exercise-induced alterations in sympathetic-somatomotor coupling in incomplete spinal cord injury,” J. Neurotrauma, 36, 2688–2697 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. C. K. Otoshi, W. M. Walwyn, N. J. Tillakaratne, et al., “Distribution and localization of 5-HT1A receptors in the rat lumbar spinal cord after transection and deafferentation,” J. Neurotrauma, 26, 575–584 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. C. A. Oyinbo, “Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade,” Acta Neurobiol. Exp., 71, 281–299 (2011).

    Google Scholar 

  86. F. E. Perrin and H. N. Noristani, “Serotonergic mechanisms in spinal cord injury,” Exp. Neurol., 318, 174–191 (2019).

    CAS  PubMed  Google Scholar 

  87. J. C. Petruska, R. M. Ichiyama, D. L. Jindrich, et al., “Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats,” J. Neurosci., 27, 4460–4471 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. C. Quilgars and S. Bertrand, “Activity-dependent synaptic dynamics in motor circuits of the spinal cord,” Curr. Opin. Physiol., 8, 44–49 (2019).

    Google Scholar 

  89. E. S. Rosenzweig, G. Courtine, D. L. Jindrich, et al., “Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury,” Nature Neurosci., 13, No. 12, 1505–1510 (2010).

    CAS  PubMed  Google Scholar 

  90. S. Rossignol, M. Martinez, M. Escalona, et al., “The “beneficial” effects of locomotor training after various types of spinal lesions in cats and rats,” Prog. Brain Res., 218, 173–198 (2015).

    PubMed  Google Scholar 

  91. K. Sadlaoud, L. Khalki, F. Brocard, et al., “Alteration of glycinergic receptor expression in lumbar spinal motoneurons is involved in the mechanisms underlying spasticity after spinal cord injury,” J. Chem. Neuroanat., 106, Art. 101787 (2020).

  92. J. Sanchez-Ventura, L. Gimenez-Llort, C. Penas, and E. Udina, “Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury,” Exp. Neurol., 336, Art. 113533 (2021).

  93. K. Satkunendrarajah, S. K. Karadimas, and A. M. Laliberte, et al., “Cervical excitatory neurons sustain breathing after spinal cord injury,” Nature, 562, 419–422 (2018).

    CAS  PubMed  Google Scholar 

  94. C. S. Siegel, K. L. Fink, S. M. Strittmatter, and W. B. Cafferty, “Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury,” J. Neurosci., 35, No. 4, 1443–1457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. M. Skup, O. Gajewska-Wozniak, P. Grygielewicz, et al., “Different effects of spinalization and locomotor training of spinal animals on cholinergic innervation of the soleus and tibialis anterior motoneurons,” Eur. J. Neurosci., 36, 2679–2688 (2012).

    PubMed  Google Scholar 

  96. U. Slawinska and L. M. Jordan, “Serotonergic influences on locomotor circuits,” Curr. Opin. Physiol., 8, 63–69 (2019).

    Google Scholar 

  97. A. C. Smith and M. Knikou, “A review on locomotor training after spinal cord injury: Reorganization of spinal neuronal circuits and recovery of motor function,” Neural Plast., 2016, Art. ID1216258 (2016).

  98. A. C. Smith, C. K. Mummidisetty, W. Z. Rymer, and M. Knikou, “Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury,” J. Neurophysiol., 112, 2164–2175 (2014).

    PubMed  Google Scholar 

  99. K. Swieck, A. Conta-Steencken, F. A. Middleton, et al., “Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury,” BMC Neurosci., 20, Art. 10 (2019).

  100. A. Takeoka and S. Arber, “Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury,” Cell Rep., 27, Iss. 1, 71–85.e3 (2019).

  101. S. Tashiro, M. Shinozaki, M. Mukaino, et al., “BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2,” Neurorehabil. Neural. Repair, 29, 677–689 (2015).

    PubMed  Google Scholar 

  102. C. M. Tse, A. E. Chisholm, T. Lam, et al., “A systematic review of the effectiveness of task-specific rehabilitation interventions for improving independent sitting and standing function in spinal cord injury,” J. Spinal Cord Med., 41, 254–266 (2018).

    PubMed  Google Scholar 

  103. R. van den Brand, J. Heutschi, Q. Barraud, et al., “Restoring voluntary control of locomotion after paralyzing spinal cord injury,” Science, 336, 1182–118 (2012).

    PubMed  Google Scholar 

  104. D. Wang, P. W. L. Tai, and G. Gao, “Adeno-associated virus vector as a platform for gene therapy delivery,” Nat. Rev. Drug Discov., 18, 358–378 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. H. Wang, N. K. Liu, Y. P. Zhang, et al., “Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury,” Exp. Neurol., 271, 368–378 (2015).

    PubMed  Google Scholar 

  106. N. Weishaupt, A. Blesch, and K. Fouad, “BDNF: The career of a multifaceted neurotrophin in spinal cord injury,” Exp. Neurol., 238, 254–264 (2012).

    CAS  PubMed  Google Scholar 

  107. P. Winchester, R. McColl, R. Querry, et al., “Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury,” Neurorehabil. Neural Repair, 19, 313–324 (2005).

    PubMed  Google Scholar 

  108. Z. Ying, R. R. Roy, V. R. Edgerton, and F. Gomez-Pinilla, “Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury,” Exp. Neurol., 193, 411–41 (2005).

    CAS  PubMed  Google Scholar 

  109. X. Ying, Q. Xie, X. Yu, et al., “Water treadmill training protects the integrity of the blood-spinal cord barrier following SCI via the BDNF/TrkB-CREB signalling pathway,” Neurochem. Int., 143, Art. 104945 (2021).

  110. K. Yokota, K. Kubota, K. Kobayakawa, et al., “Pathological changes of distal motor neurons after complete spinal cord injury,” Mol. Brain, 12, Art. 4 (2019).

  111. P. Yu, W. Zhang, Y. Liu, et al., “The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury,” Int. Rev. Neurobiol., 147, 199–217 (2019).

    CAS  PubMed  Google Scholar 

  112. M. M. Zavvarian and J. M. G. Hong, “The functional role of spinal interneurons following traumatic spinal cord injury,” Front. Cell. Neurosci., 14, Art. 127 (2020).

    Google Scholar 

  113. W. Zhang, B. Yang, H. Weng, et al., “Wheel running improves motor function and spinal cord plasticity in mice with genetic absence of the corticospinal tract,” Front. Cell. Neurosci., 13, Art. 106 (2019).

  114. L. V. Zholudeva, V. E. Abraira, K. Satkunendrarajah, et al., “Spinal interneurons as gatekeepers to neuroplasticity after injury or disease,” J. Neurosci., 41, No. 5, 845–854 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. L. V. Zholudeva, L. Qiang, V. Marchenko, et al., “The neuroplastic and therapeutic potential of spinal interneurons in the injured spinal cord,” Trends Neurosci., 41, 625–639 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. M. Zuchner, E. Kondratskaya, C. B. Sylte, et al., “Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury,” J. Physiol., 596, 281–303 (2018).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Stolbkov.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 53, No. 4, pp. 27–39, October–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolbkov, Y.K., Gerasimenko, Y.P. Plastic Changes Induced by Motor Activity in Spinal Cord Injury. Neurosci Behav Physi 53, 399–408 (2023). https://doi.org/10.1007/s11055-023-01438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01438-0

Keywords

Navigation