Skip to main content
Log in

Evoked Potentials Appearing in the Human Midbrain after Sounding of a Simple Tone

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies of neuron activity in animals have shown that the brainstem is involved in processing the ends of sounds. We report here an analysis of the reaction of the human midbrain to the ends of sound stimuli. Electrical activity was recorded using a depth electrode located in the cerebral aqueduct. The study was conducted as part of intraoperative monitoring (IOM) with the aim of minimizing neurological deficit in the postoperative period. Results of the analysis of evoked potentials recorded in response to simple tones in six patients are presented. Evoked potentials arising after the start of the sound stimulus showed VS, VIS, S1S, S2S, S3S peaks, associated with nerve impulse conduction along the auditory pathway. The end of the sound stimulus was followed by VE, VIE, S1E, S2E, S3E peaks, which are also associated with the nerve impulse conduction along the auditory pathway, along with the E peak, which most likely reflects the analysis of sound information by midbrain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimov, A. G., Egorova, M. A., and Ehret, G., “Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus,” Eur. J. Neurosci., 45, 440–459 (2017).

    Article  PubMed  Google Scholar 

  • Alluri, R. K., Rose, G. J., Hanson, J. L., et al., “Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds,” Proc. Natl. Acad. Sci. USA, 113, E1927–E1935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, L. A. and Linden, J. F., “Mind the gap: Two dissociable mechanisms of temporal processing in the auditory system,” J. Neurosci., 36, No. 6, 1977–1995 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba, H., Tsukano, H., Hishida, R., et al., “Auditory cortical field coding long-lasting tonal offsets in mice,” Sci. Rep., 6, 1–11 (2016).

    Article  Google Scholar 

  • Behr, R., Colletti, V., Matthies, C., et al., “New outcomes with auditory brainstem implants in NF2 patients,” Otol. Neurotol., 35, 1844–1851 (2014).

    Article  PubMed  Google Scholar 

  • Brinkmann, R. D. and Scherg, M., “Human auditory on- and off-potentials of the brainstem: Influence of Stimulus Envelope Characteristics,” Scand. Audiol., 8, 27–32 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Casseday, J., Ehrlich, D., and Covey, E., “Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus,” Science, 264, No. 5160, 847–850 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Dhanasingh, A. and Hochmair, I., “ABI-auditory brainstem implant,” Acta Otolaryngol., 141, Suppl. 1, 63–81 (2021).

    Article  PubMed  Google Scholar 

  • Duque, D., Wang, X., Nieto-Diego, J., et al., “Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity,” Sci. Rep., 6, 24114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantserova, A. O., Oknina, L. B., Pitskhelauri, D. I., et al., “Midbrain evoked potentials associated with the beginning and end of a simple tone,” Fiziol. Cheloveka, 48, No. 3, 5–13 (2022).

    Google Scholar 

  • Kopp-Scheinpflug, C., Sinclair, J. L., and Linden, J. F., “When sound stops: Offset responses in the auditory system,” Trends Neurosci., 41, 712–728 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Whiteway, M. R., Sheikhattar, A., et al., “Parallel processing of sound dynamics across mouse auditory cortex via spatially patterned thalamic inputs and distinct areal intracortical circuits,” Cell Rep., 27, 872–885.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels, T. C., Duffy, M. T., and Rogers, D. J., “Hearing loss in adults: Differential diagnosis and treatment,” Am. Fam. Physician, 100, 98–108 (2019).

    PubMed  Google Scholar 

  • Naples, J. G. and Ruckenstein, M. J., “Cochlear Implant,” Otolaryngol. Clin. North Am., 53, 87–102 (2020).

    Article  PubMed  Google Scholar 

  • Parsons, C. E., Young, K. S., Joensson, M., et al., “Ready for action: A role for the human midbrain in responding to infant vocalizations,” Soc. Cogn. Affect. Neurosci., 9, 977–984 (2014).

    Article  PubMed  Google Scholar 

  • Potter, H., “Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bullfrog,” J. Neurophysiol., 28, No. 6, 1155–1184 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Sahinovic, M. M., Struys, M. M. R. F., and Absalom, A. R., “Clinical pharmacokinetics and Pharmacodynamics of Propofol,” Clin. Pharmacokinet., 57, 1539–1558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala, F., Lanteri, P., and Bricolo, A., “Motor evoked potential monitoring for spinal cord and brain stem surgery,” Adv. Tech. Stand. Neurosurg., 29, 133–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Shaw, N. A., “The temporal relationship between the brainstem and primary cortical auditory evoked potentials,” Prog. Neurobiol., 47, 95–103 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sołyga, M. and Barkat, T. R., “Distinct processing of tone offset in two primary auditory cortices,” Sci. Rep., 9, 1–12 (2019).

    Article  Google Scholar 

  • Swann, N. C., De Hemptinne, C., Miocinovic, S., et al., “Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease,” J. Neurosurg., 128, 605–616 (2018).

    Article  PubMed  Google Scholar 

  • Valentinuzzi, M. E., “Hearing aid history: From ear trumpets to digital technology,” IEEE Pulse, 11, 33–36 (2020).

    Article  PubMed  Google Scholar 

  • World Health Organization (WHO), World Report on Hearing: Executive Summary [Russian version].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kantserova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 5, pp. 707–716, September–October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantserova, A.O., Oknina, L.B., Pitskhelauri, D.I. et al. Evoked Potentials Appearing in the Human Midbrain after Sounding of a Simple Tone. Neurosci Behav Physi 53, 358–364 (2023). https://doi.org/10.1007/s11055-023-01434-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01434-4

Keywords

Navigation