Skip to main content
Log in

Transcranial Direct Current Electrical Stimulation Modulates the Feedback-Related Negativity Component in a Monetary Game

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The present study addressed the neurophysiological effects of transcranial direct current stimulation (tDCS) on a component of evoked potentials termed “feedback-related negativity” (FRN). Subjects completed a delayed monetary reinforcement task in which they tried to avoid monetary losses of various sizes. We compared the amplitudes of FRN in responses to information about monetary loss in the control group with those in a group undergoing cathodic stimulation of the ventromedial prefrontal cortex. Published data led us to hypothesize that cathodic tDCS would suppress the amplitude of the FRN component. Contrary to this hypothesis, however, the amplitude of the component in the stimulation group was significantly greater than that in the control group. These results provide additional evidence for the amplifying effect of the cathodic tDCS and lead to the suggestion that the neural networks involved in signal generation during processing of monetary loss differ from those in games not associated with a monetary reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, W. H., and Brown, J. W., “Medial prefrontal cortex as an actionoutcome predictor,” Nat. Neurosci., 14, No. 10, 1338–1344 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, T. E. and Holroyd, C. B., “Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200,” Biol. Psychol., 87, No. 1, 25–34 (2011).

    PubMed  Google Scholar 

  • Becker, M. P., Nitsch, A. M., Miltner, W. H., and Straube, T., “A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task,” J. Neurosci., 34, No. 8, 3005–3012 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Been, G., Ngo, T. T., Miller, S. M., and Fitzgerald, P. B., “The use of tDCS and CVS as methods of non-invasive brain stimulation,” Brain Res. Rev., 56, No. 2, 346–36 (2007).

    PubMed  Google Scholar 

  • Boroda, E., Sponheim, S. R., Fiecas, M., and Lim, K. O., “Transcranial direct current stimulation (tDCS) elicits stimulus-specific enhancement of cortical plasticity,” NeuroImage, 211, 116598 (2020).

    PubMed  Google Scholar 

  • Broyd, S. J., Richards, H. J., Helps, S. K., et al., “An electrophysiological monetary incentive delay (e-MID) task: a way to decompose the different components of neural response to positive and negative monetary reinforcement,” J. Neurosci. Meth., 209, No. 1, 40–49 (2012).

    Google Scholar 

  • Carlson, J. M., Foti, D., Mujica-Parodi, L. R., et al., “Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: a combined ERP and fMRI study,” Neuro-Image, 57, No. 4, 1608–1616 (2011).

    PubMed  Google Scholar 

  • Carlson, J. M., Foti, D., Harmon-Jones, E., and Proudfit, G. H., “Midbrain volume predicts fMRI and ERP measures of reward reactivity,” Brain Struct. Funct., 220, No. 3, 1861–1866 (2015).

    PubMed  Google Scholar 

  • Dockery, C. A., Hueckel-Weng, R., Birbaumer, N., and Plewnia, C., “Enhancement of planning ability by transcranial direct current stimulation,” J. Neurosci., 29, No. 22, 7271–7277 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doñamayor, N., Schoenfeld, M. A., and Münte, T. F., “Magneto-and electroencephalographic manifestations of reward anticipation and delivery,” NeuroImage, 62, No. 1, 17–29 (2012).

    PubMed  Google Scholar 

  • Falkenstein, M., “Effects of errors in choice reaction tasks on the ERP under focused and divided attention,” in: Psychophysiological Brain Research, Brunia, C. H. M. et al. (eds.), Tilburg University Press, Tilburg, The Netherlands (1990), Vol. 1, pp. 192–195.

  • Foti, D., Carlson, J. M., Sauder, C. L., and Proudfit, G. H., “Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype,” NeuroImage, 101, 50–58 (2014).

  • Garrido, M. I., Friston, K. J., Kiebel, S. J., et al., “The functional anatomy of the MMN: a DCM study of the roving paradigm,” NeuroImage, 42, No. 2, 936–944 (2008).

    PubMed  Google Scholar 

  • Gehring, W. J. and Willoughby, A. R., “The medial frontal cortex and the rapid processing of monetary gains and losses,” Science, 295, No. 5563, 2279–2282 (2002).

    CAS  PubMed  Google Scholar 

  • Gehring, W. J., Goss, B., Coles, M. G., et al., “A neural system for error detection and compensation,” Psychol. Sci., 4, No. 6, 385–390 (1993).

    Google Scholar 

  • Gehring, W. J., Liu, Y., Orr, J. M., and Carp, J., “The error-related negativity (ERN/Ne),” in: The Oxford Handbook of Event-Related Potential Components (2012), pp. 231–291.

  • Glazer, J. E., Kelley, N. J., Pornpattananangkul, N., et al., “Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing,” Int. J. Psychophysiol., 132, 184–202 (2018).

    PubMed  Google Scholar 

  • Glimcher, P. W., Decisions, Uncertainty, and the Brain: The Science of Neuroeconomics, MIT Press (2003).

    Google Scholar 

  • Gordon, P. C., Zrenner, C., Desideri, D., et al., “Modulation of cortical responses by transcranial direct current stimulation of dorsolateral prefrontal cortex: A resting-state EEG and TMS-EEG study,” Brain Stimul., 11, No. 5, 1024–1032 (2018).

    PubMed  Google Scholar 

  • Gorin, A., Krugliakova, E., Nikulin, V., et al., “Cortical plasticity elicited by acoustically cued monetary losses: an ERP study,” Sci. Rep., 10, 21161 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goyer, J. P., Woldorff, M. G., and Huettel, S. A., “Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards,” J. Cogn. Neurosci., 20, No. 11, 2058–2069 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Hajcak, G., Holroyd, C. B., Moser, J. S., and Simons, R. F., “Brain potentials associated with expected and unexpected good and bad outcomes,” Psychophysiology, 42, No. 2, 161–170 (2005).

    PubMed  Google Scholar 

  • Hajcak, G., Moser, J. S., Holroyd, C. B., and Simons, R. F., “It’s worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks,” Psychophysiology, 44, No. 6, 905–912 (2007).

    PubMed  Google Scholar 

  • Hanley, C. J., Singh, K. D., and McGonigle, D. J., “Transcranial modulation of brain oscillatory responses: A concurrent tDCS-MEG investigation,” NeuroImage, 140, 20–32 (2016).

    PubMed  Google Scholar 

  • Holroyd, C. B. and Coles, M. G. H., “The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity,” Psychol. Rev., 109, No. 4, 679 (2002).

  • Holroyd, C. B., Pakzad-Vaezi, K. L., and Krigolson, O. E., “The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback,” Psychophysiology, 45, No. 5, 688–697 (2008).

    PubMed  Google Scholar 

  • Holroyd, C. B., Krigolson, O. E., and Lee, S., “Reward positivity elicited by predictive cues,” Neuroreport, 22, No. 5, 249–252 (2011).

    PubMed  Google Scholar 

  • Knutson, B., Taylor, J., Kaufman, M., et al., “Distributed neural representation of expected value,” J. Neurosci., 25, No. 19, 4806–4812 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knutson, B., Westdorp, A., Kaiser, E., and Hommer, D., “FMRI visualization of brain activity during a monetary incentive delay task,” NeuroImage, 12, No. 1, 20–27 (2000).

    CAS  PubMed  Google Scholar 

  • Krigolson, O. E., “Event-related brain potentials and the study of reward processing: Methodological considerations,” Int. J. Psychophysiol., 132, 175–183 (2018).

    PubMed  Google Scholar 

  • Krugliakova, E., Klucharev, V., Fedele, T., et al., “Correlation of cuelocked FRN and feedback-locked FRN in the auditory monetary incentive delay task,” Exp. Brain Res., 236, No. 1, 141–151 (2018).

    PubMed  Google Scholar 

  • Krugliakova, E., Gorin, A., Fedele, T., et al., “The monetary incentive delay (MID) task induces changes in sensory processing: ERP evidence,” Front. Hum. Neurosci., 13, 382 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Matsushita, R., Puschmann, S., Baillet, S., and Zatorre, R. J., “Inhibitory effect of tDCS on auditory evoked response: Simultaneous MEGtDCS reveals causal role of right auditory cortex in pitch learning,” NeuroImage, 233, 117915 (2021).

    PubMed  Google Scholar 

  • Miltner, W. H. R., Braun, C. H., and Coles, M. G. H., “Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection,” J. Cogn. Neurosci., 9, No. 6, 788–798 (1997).

    CAS  PubMed  Google Scholar 

  • Miniussi, C., Harris, J. A., and Ruzzoli, M., “Modelling non-invasive brain stimulation in cognitive neuroscience,” Neurosci. Biobehav. Rev., 37, No. 8, 1702–1712 (2013).

    PubMed  Google Scholar 

  • Näätänen, R., Pakarinen, S., Rinne, T., and Takegata, R., “The mismatch negativity (MMN): towards the optimal paradigm,” Clin. Neurophysiol., 115, No. 1, 140–144 (2004).

    PubMed  Google Scholar 

  • Nieuwenhuis, S., Heslenfeld, D. J., von Geusau, N. J. A., et al., “Activity in human reward-sensitive brain areas is strongly context dependent,” NeuroImage, 25, No. 4, 1302–1309 (2005).

    PubMed  Google Scholar 

  • Noreika, V., Kamke, M. R., Canales-Johnson, A., et al., “Alertness fluctuations when performing a task modulate cortical evoked responses to transcranial magnetic stimulation,” NeuroImage, 223, 117305 (2020).

    PubMed  Google Scholar 

  • Potts, G. F., Martin, L. E., Burton, P., and Montague, P. R., “When things are better or worse than expected: the medial frontal cortex and the allocation of processing resources,” J. Cogn. Neurosci., 18, No. 7, 1112–1119 (2006).

    PubMed  Google Scholar 

  • Rahimi, V., Mohamadkhani, G., Alaghband-Rad, J., et al., “Modulation of temporal resolution and speech long-latency auditory-evoked potentials by transcranial direct current stimulation in children and adolescents with dyslexia,” Exp. Brain Res., 237, No. 3, 873–882 (2019).

    PubMed  Google Scholar 

  • Reinhart, R. M. G. and Woodman, G. F., “Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning,” J. Neurosci., 34, No. 12, 4214–4227 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruchsow, M., Grothe, J., Spitzer, M., and Kiefer, M., “Human anterior cingulate cortex is activated by negative feedback: evidence from event-related potentials in a guessing task,” Neurosci. Lett., 325, No. 3, 203–206 (2002).

    CAS  PubMed  Google Scholar 

  • Sambrook, T. D. and Goslin, J., “Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors,” Neuropsychologia, 61, 1–10 (2014).

    PubMed  Google Scholar 

  • San Martín, R., “Event-related potential studies of outcome processing and feedback-guided learning,” Front. Hum. Neurosci., 6, 304 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Schaworonkow, N., Triesch, J., Ziemann, U., and Zrenner, C., “EEGtriggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities,” Brain Stimul., 12, No. 1, 110–118 (2019).

    PubMed  Google Scholar 

  • Tadel, F., Baillet, S., Mosher, J. C., et al., “Brainstorm: a user-friendly application for MEG/EEG analysis,” Computat. Intell. Neurosci. (2011).

  • Thomas, J., Vanni-Mercier, G., and Dreher, J. C., “Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans,” Front. Neurosci., 7, 214 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Walsh, M. M. and Anderson, J. R., “Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice,” Neurosci. Biobehav. Rev., 36, No. 8, 1870–1884 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Watts, A. T. M., Bachman, M. D., and Bernat, E. M., “Expectancy effects in feedback processing are explained primarily by time-frequency delta not theta,” Biol. Psychol., 129, 242–252 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Wiethoff, S., Hamada, M., and Rothwell, J. C., “Variability in response to transcranial direct current stimulation of the motor cortex,” Brain Stimul., 7, No. 3, 468–475 (2014).

    PubMed  Google Scholar 

  • Wu, Y. and Zhou, X., “The P300 and reward valence, magnitude, and expectancy in outcome evaluation,” Brain Res., 1286, 114–122 (2009).

    CAS  PubMed  Google Scholar 

  • Zhou, Z., Yu, R., and Zhou, X., “To do or not to do? Action enlarges the FRN and P300 effects in outcome evaluation,” Neuropsychologia, 48, No. 12, 3606–3613 (2010).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gorin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 5, pp. 678–689, September–October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorin, A.A., Klyuchnikov, V.A., Dutov, I.I. et al. Transcranial Direct Current Electrical Stimulation Modulates the Feedback-Related Negativity Component in a Monetary Game. Neurosci Behav Physi 53, 345–352 (2023). https://doi.org/10.1007/s11055-023-01432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01432-6

Keywords

Navigation