Skip to main content
Log in

Association of Gene Polymorphisms DRD3 rs6280, COMT rs4680, and HTR2A rs7322347 with Schizophrenia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. To seek associations of the genetic polymorphisms rs6280 of the DRD3 gene, rs4680 of the COMT gene, and rs7322347 of the HTR2A gene with schizophrenia. Materials and methods. The cohort included 300 inpatients with paranoid schizophrenia. The healthy control group consisted of 290 subjects. Associations between polymorphisms and study groups were assessed by logistic regression. Results. The severity of positive symptoms on the PANSS in the patient cohort was 14.0 [11.0; 18.0] points, the severity of negative symptoms was 21.0 [17.0; 27.0] points, and severity of other symptoms was 33.0 [27.8; 38.0] points. A between-group difference (p = 0.012) was found on comparison of the genotype for the rs7322347 polymorphism. The CC genotype of the rs6280 polymorphism was found to be associated with schizophrenia (OR 3.37 (1.50; 8.03)). The TT genotype of the rs7322347 polymorphism was associated with the control group (OR 1.83 (1.25; 2.68)). Conclusions. The analysis results confirmed the hypothesis that the genetic polymorphisms rs7322347 of the HTR2A gene (p = 0.006) and rs6280 of the DRD3 gene (p = 0.004) are associated with the disease. The hypothesis that there is a link between the rs4680 polymorphism of the COMT gene could not be confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Kibitov, A. A. Kurylev, V. M. Brodyanskii, et al., “Combination of dopamine receptor type 2 (DRD2-141C INS/DEL) and protein kinase PKK2 (DRD2/ANKK1 TAQ1A) gene polymorphisms reduces the genetic risk of developing paranoid schizophrenia,” Sotsial. Klin. Psikhiatr., 27, No. 3, 63–72 (2017).

    Google Scholar 

  2. Schizophrenia Working Group of the Psychiatric Genomics Consortium, “Biological insights from 108 schizophrenia-associated genetic loci,” Nature, 511, 421–427 (2014), https://doi.org/10.1038/nature13595.

    Article  CAS  PubMed Central  Google Scholar 

  3. M. J. Owen, A. Sawa, and P. B. Mortensen, “Schizophrenia,” Lancet, 388, No. 10039, 86–97 (2016), https://doi.org/10.1016/S0140-6736(15)01121-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Psychiatric GWAS Consortium Coordinating Committee, S. Cichon, N. Craddock, M. Daly, et al., “Genomewide association studies: history, rationale, and prospects for psychiatric disorders,” Am. J. Psychiatry, 166, No. 5, 540–556 (2009), https://doi.org/10.1176/appi.ajp.2008.08091354.

    Article  Google Scholar 

  5. E. C. Johnson, R. Border, W. E. Melroy-Greif, et al., “No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes,” Biol. Psychiatry, 82, No. 10, 702–708 (2017), https://doi.org/10.1016/j.biopsych.2017.06.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. M. Reznik, G. P. Kostyuk, and A. N. Khannanova, “Vulnerability for schizophrenia on the basis of molecular genetics investigations,” Sotsial. Klin. Psikhiatr., 26, No. 3, 101–108 (2016).

    Google Scholar 

  7. N. C. Allen, S. Bagade, M. B. McQueen, et al., “Systematic meta- analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database,” Nat. Genet., 40, No. 7, 827–834 (2008), https://doi.org/10.1038/ng.171.

    Article  CAS  PubMed  Google Scholar 

  8. A. L. Collins, Y. Kim, P. Sklar, et al., “Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results,” Psychol. Med., 42, No. 3, 607–616 (2012), https://doi.org/10.1017/S0033291711001607.

    Article  CAS  PubMed  Google Scholar 

  9. L. A. Antonucci, G. Pergola, A. Pigoni, et al., “A Pattern of cognitive deficits stratified for genetic and environmental risk reliably classifies patients with schizophrenia from healthy control subjects,” Biol. Psychiatry, 87, No. 8, 697–707 (2020), https://doi.org/10.1016/j.biopsych.2019.11.007.

    Article  CAS  PubMed  Google Scholar 

  10. W. A. Haynes, F. Vallania, C. Liu, et al., “ Empowering multi-cohort gene expression analysis to increase reproducibility,” bioArxiv (2016), https://doi.org/10.1101/071514.

  11. T. Miyakawa, “No raw data, no science: another possible source of the reproducibility crisis,” Mol. Brain, 13, No. 1, 24 (2020), https://doi.org/10.1186/s13041-020-0552-2.

  12. S. Kapur, A. G. Phillips, and T. R. Insel, “Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?” Mol. Psychiatry, 17, No. 12, 1174–1179 (2012), https://doi.org/10.1038/mp.2012.105.

    Article  CAS  PubMed  Google Scholar 

  13. A. Morozova, K. Pavlov, Y. Zorkina, et al., “Association of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A with clinical features of youth-onset schizophrenia,” Front. Psychiatry, 10, 830 (2019), https://doi.org/10.3389/fpsyt.2019.00830.

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. P. Ioannidis, E. E. Ntzani, T. A. Trikalinos, and D. G. Contopoulos-Ioannidis, “Replication validity of genetic association studies,” Nat. Genet., 29, No. 3, 306–309 (2001), https://doi.org/10.1038/ng749.

    Article  CAS  PubMed  Google Scholar 

  15. X. Qi, J. Xuan, J. Xing, et al., “No association between dopamine D3 receptor gene Ser9Gly polymorphism (rs6280) and risk of schizophrenia: an updated meta-analysis,” Neuropsychiatr. Dis. Treat., 13, 2855–2865 (2017), https://doi.org/10.2147/ndt.s152784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Cariaso and G. Lennon, “SNPedia: a wiki supporting personal genome annotation, interpretation and analysis,” Nucleic Acids Res., 40, Iss. D1, D1308–1312 (2012), https://doi.org/10.1093/nar/gkr798.

  17. J.Savitz, C. A. Hodgkinson, C. Martin-Soelch, et al., “The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement,” PLoS One, 8, No. 1, e54108 (2013), https://doi.org/10.1371/journal.pone.0054108.

  18. J. Han, Y. Li, and X. Wang, “Potential link between genetic polymorphisms of catechol-O-methyltransferase and dopamine receptors and treatment efficacy of risperidone on schizophrenia,” Neuropsychiatr. Dis. Treat., 13, 2935–2943 (2017), https://doi.org/10.2147/NDT.S148824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T. B. González-Castro, Y. Hernández-Díaz, I. E. Juárez-Rojop, et al., “The role of a catechol-O-methyltransferase (COMT) Val158Met genetic polymorphism in schizophrenia: A systematic review and updated meta-analysis on 32,816 subjects,” Neuromolecular Med., 18, 216–231 (2016), https://doi.org/10.1007/s12017-016-8392-z.

    Article  CAS  PubMed  Google Scholar 

  20. M. B. First, J. B. W. Williams, R. S. Karg, et al., Structured Clinical Interview for DSM-5 Disorders, American Psychiatric Publishing, Arlington, VA, USA, (2016), 1st ed.

  21. G. Warnes, G. Gorjanc, F. Leisch, et al., Genetics: Population Genetics (2019), https://CRAN.R-project.org/package=genetics.

  22. A. S. Foulkes, Applied Statistical Genetics with R: For Population-Based Association Studies, Springer, New York, USA (2009), https://doi.org/10.1007/978-0-387-89554-3.

  23. X. Robin, N. Turck, A. Hainard, et al., “pROC: an open-source package for R and S+ to analyze and compare ROC curves,” BMC Bioinformatics, 12, No. 1, 77 (2011), https://doi.org/10.1186/1471-2105-12-77.

  24. T. Tjur, “Coefficients of determination in logistic regression models – A new proposal: the coefficient of discrimination,” Am. Statistician, 63, No. 4, 366–372 (2009), https://doi.org/10.1198/tast.2009.08210.

    Article  Google Scholar 

  25. R Core, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, (2020), https://cran.r-project.org.

  26. J. Lochman, V. J. Balcar, F. Šťastný, et al., “Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory Regions of the ADRA2A, DRD3 and SNAP-25 Genes,” Psychiatry Res., 205, No. 1, 7–12 (2013), https://doi.org/10.1016/j.psychres.2012.08.003.

    Article  CAS  PubMed  Google Scholar 

  27. K. Utsunomiya, T. Shinkai, V. De Luca, et al., “Genetic association between the dopamine D3 gene polymorphism (Ser9Gly) and schizophrenia in Japanese populations: Evidence from a case – control study and meta-analysis,” Neurosci. Lett., 444, No. 2, 161–165 (2008), https://doi.org/10.1016/j.neulet.2008.08.005.

    Article  CAS  PubMed  Google Scholar 

  28. X.-N. Li, J.-L. Zheng, X.-H. Wei, et al., “No association between the Ser9Gly polymorphism of the dopamine receptor D3 gene and schizophrenia: a meta-analysis of family-based association studies,” BMC Med. Genet., 21, No. 1, 85 (2020), https://doi.org/10.1186/s12881-020-01018-w.

  29. K. Maria, T. Charalampos, D. Vassilakopoulou, et al., “Frequency distribution of COMT polymorphisms in Greek patients with schizophrenia and controls: A study of SNPs rs737865, rs4680, and rs165599,” ISRN Psychiatry, 2012, e651613 (2012), https://doi.org/10.5402/2012/651613.

  30. T. Okochi, M. Ikeda, T. Kishi, et al., “Meta-analysis of association between genetic variants in COMT and schizophrenia: An update,” Schizophr. Res., 110, No. 1, 140–148 (2009), https://doi.org/10.1016/j.schres.2009.02.019.

    Article  PubMed  Google Scholar 

  31. K. Oishi, T. Niitsu, N. Kanahara, et al., “Genetic risks of schizophrenia identified in a matched case-control study,” Eur. Arch. Psychiatry Clin. Neurosci., 271, No. 4, 775–781 (2021), https://doi.org/10.1007/s00406-020-01158-3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sofronov.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 7, pp. 115–120, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofronov, A.G., Dobrovolskaya, A.E., Morozova, A.Y. et al. Association of Gene Polymorphisms DRD3 rs6280, COMT rs4680, and HTR2A rs7322347 with Schizophrenia. Neurosci Behav Physi 53, 313–318 (2023). https://doi.org/10.1007/s11055-023-01427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01427-3

Keywords

Navigation