Skip to main content
Log in

GABAB Inhibition through Feedback Is Involved in the Synchronization of Interictal Spikes in the Cortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Recent studies have significantly expanded our understanding of the functions of GABAergic interneurons in cortical neural networks. Interneurons of specific classes are involved in generating interictal activity in the cortex not only in certain types of pathology, but also in conditions in which inhibition is mediated mainly via GABAB receptors. Interictal activity consists of high-amplitude spikes, where a short excitatory phase is followed by a long inhibitory phase occurring almost simultaneously in different parts of the cortex. Highamplitude spikes reflect the synchronous action of excitatory neurons in a local area, while synchronous activity in remote areas is determined by feedback between pyramidal cells and interneurons, when the activity of a large mass of neurons occurs simultaneously within a narrow time interval. Synchronization of interictal spikes involves Martinotti cells, as well as parvalbumin, neurogliaform, and vasoactive intestinal peptide-expressing interneurons, which, as experimental data show, also inhibit via GABAB receptors. Several mechanisms are now known which synchronize neuron activity in cortical neural networks: via electrical connections, volume conduction, and synaptic feedback – both between pyramidal neurons and interneurons and between interneurons. We propose that the mechanism of synchronization of interictal spikes in cortical neural networks operates as follows. This mechanism appears to operate in the same way both in local neural networks and over distances. When excitation occurs, it is followed by inhibition mediated by feedback; this limits the excitation period and thus creates a time window for integration, and this also occurs in neighboring cortical neural networks. At the initial stage, the amplitudes of interictal spikes are small and nonsimultaneous in different parts of the cortex. As time progresses, ever more pyramidal neurons become active during the time window, thus increasing the amplitude of the interictal spike, in turn increasing inhibition. Increased inhibition due to feedback ultimately begins to affect neighboring neural networks, with the result that interictal spikes appear almost simultaneously in different parts of the cortex. This produces a significant lengthening of postspike inhibition, as inhibition within a neural network is supplemented by inhibition from neighbors via inhibitory feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Marchenko and M. I. Zaichenko, “Dynamics of the spatial synchronization of epileptiform discharges in the rat neocortex,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 113 (2015).

  2. V. G. Marchenko and K. A. Saltykov, “Synchronization mechanisms in local neural networks in the neocortex. Simulation and experimental studies,” Zh. Vyssh. Nerv. Deyat., 60, No. 1, 80 (2010).

  3. V. G. Marchenko, M. P. Rysakova, and M. I. Zaichenko, “Distribution of internal electrical fields as a possible mechanism of synchronization of interictal spikes in the rat neocortex,” Zh. Vyssh. Nerv. Deyat., 68, No. 2, 250 (2018).

  4. R. Aronoff, F. Matyas, C. Mateo, et al., “Long-range connectivity of mouse primary somatosensory barrel cortex,” Eur. J. Neurosci., 31, No. 12, 2221 (2010).

  5. G. A. Ascoli, L. Alonso-Nanclares, S. A. Anderson, et al., “Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex,” Nat. Rev. Neurosci., 9, No. 7, 557 (2008).

  6. M. Avoli, “Mechanisms of epileptiform synchronization in cortical neuronal networks,” Curr. Med. Chem., 21, No. 6, 653 (2014).

  7. M. Avoli, M. de Curtis, V. Gnatkovsky, et al., “Specifi c imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy,” J. Neurophysiol., 115, No. 6, 3229–3237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Barbarosie and M. Avoli, “CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures,” J. Neurosci., 17, No. 23, 9308–9314 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. S. Benardo, “Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro,” J. Physiol., 476, 203–215 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. K. Berger, G. Silberberg, R. Perin, and H. Markram, “Brief bursts self-inhibit and correlate the pyramidal network,” PLoS Biol., 8, No. 9, e1000473 (2010).

  11. H. Bink, M. Sedigh-Sarvestani, I. Fernandez-Lamo, et al., “Spatiotemporal evolution of focal epileptiform activity from surface and laminar field recordings in cat neocortex,” J. Neurophysiol., 119, No. 6, 2068–2081 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. S. Bohannon and J. J. Hablitz, “Optogenetic dissection of roles of specific cortical interneuron subtypes in GABAergic network synchronization,” J. Physiol., 596, No. 5, 901–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. A. Booker, D. Althof, and C. E. Degro, et al., “Differential surface density and modulatory effects of presynaptic GABAB receptors in hippocampal cholecystokinin and parvalbumin basket cells,” Brain Struct. Funct., 222, No. 8, 3677–3690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. A. Booker, D. Loreth, A. L. Gee, et al., “Postsynaptic GABABRs inhibit L-type calcium channels and abolish long-term potentiation in hippocampal somatostatin interneurons,” Cell Rep., 22, No. 1, 36–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. A. Caputi, S. Melzer, M. Michael, and H. Monyer, “The long and short of GABAergic neurons,” Curr. Opin. Neurobiol., 23, No. 2, 179–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. L. Chauvière, T. Doublet, A. Ghestem, et al., “Changes in interictal spike features precede the onset of temporal lobe epilepsy,” Ann. Neurol., 71, No. 6, 805–814 (2012).

    Article  PubMed  Google Scholar 

  17. R. Chittajallu, K. A. Pelkey, and C. J. McBain, “Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation,” Nat. Neurosci., 16, No. 1, 13–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. D. Contreras, I. Timofeev, and M. Steriade, “Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks,” J. Physiol., 494, No. 1, 251–264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. T. Craig, E. W. Mayne, B. Bettler, et al., “Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity,” J. Physiol., 591, No. 4, 835–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. M. T. Craig and C. J. McBain, “The emerging role of GABAB receptors as regulators of network dynamics: fast actions from a ‘slow’ receptor,” Curr. Opin. Neurobiol., 26, 15–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. M. T. Craig and C. J. McBain, “Navigating the circuitry of the brain’s GPS system: Future challenges for neurophysiologists,” Hippocampus, 25, No. 6, 736–743 (2015), https://doi.org/10.1002/hipo.22456.

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. D’Antuono, J. Louvel, R. Köhling, et al., “GABAA receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex,” Brain, 127, No. 7, 1626–1640 (2004).

    Article  PubMed  Google Scholar 

  23. M. R. Deans, J. R. Gibson, C. Sellitto, et al., “Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36,” Neuron, 31, No. 3, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. M. de Curtis and G. Avanzini, “Interictal spikes in focal epileptogenesis,” Prog. Neurobiol., 63, No. 5, 541–567 (2001).

    Article  PubMed  Google Scholar 

  25. M. de Curtis and M. Avoli, “GABAergic networks jump-start focal seizures,” Epilepsia, 57, No. 5, 679–687 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. de Curtis, C. Radici, and M. Forti, “Cellular mechanisms underlying spontaneous interictal spikes in an acute model of focal cortical epileptogenesis,” Neuroscience, 88, No. 1, 107–117 (1999).

    Article  PubMed  Google Scholar 

  27. J. DeFelipe, P. L. López-Cruz, R. Benavides-Piccione, et al., “New insights into the classifi cation and nomenclature of cortical GABAergic interneurons,” Nat. Rev. Neurosci., 14, No. 3, 202–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Dorn and O. W. Witte, “Refractory periods following interictal spikes in acute experimentally induced epileptic foci,” Electroencephalogr. Clin. Neurophysiol., 94, No. 1, 80–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. E. E. Fanselow and B. W. Connors, “The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UPDOWN states of mouse neocortex,” J. Neurophysiol., 104, No. 2, 596–606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. E. Fanselow, K. A. Richardson, and B. W. Connors, “Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex,” J. Neurophysiol., 100, No. 5, 2640–2652 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. D. Feldmeyer, M. Brecht, F. Helmchen, et al., “Barrel cortex function,” Prog. Neurobiol., 103, 3–27 (2013).

    Article  PubMed  Google Scholar 

  32. D. Feldmeyer, G. Qi, V. Emmenegger, and J. F. Staiger, “Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex,” Neuroscience, 368, 132–151 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. E. Fino and R. Yuste, “Dense inhibitory connectivity in neocortex,” Neuron, 69, No. 6, 1188–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. M. Funk, K. Peelman, M. Bellesi, et al., “Role of somatostatin-positive cortical interneurons in the generation of sleep slow waves,” J. Neurosci., 37, No. 38, 9132–9148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. F. Fröhlich and D. McCormick, “Endogenous electric fields may guide neocortical network activity,” Neuron, 67, No. 1, 129–143 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Galarreta and S. Hestrin, “Spike transmission and synchrony detection in networks of GABAergic interneurons,” Science, 292, No. 5525, 2295–2299 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. L. J. Gentet, M. Avermann, F. Matyas, et al., “Membrane potential dynamics of GABAergic Neurons in the barrel cortex of behaving mice,” Neuron, 65, No. 3, 422–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. L. J. Gentet, Y. Kremer, H. Taniguchi, et al., “Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex,” Nat. Neurosci., 15, No. 4, 607–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. L. B. Gerrard, M. L. S. Tantirigama, and J. M. Bekkers, “Pre- and postsynaptic activation of gabab receptors modulates principal cell excitation in the piriform cortex,” Front. Cell. Neurosci, 12, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. J. R. Gibson, M. Beierlein, and B. W. Connors, “Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4,” J. Neurophysiol., 93, No. 1, 467–480 (2005).

    Article  PubMed  Google Scholar 

  41. J. H. Goldberg, C. O. Lacefield, and R. Yuste, “Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting,” J. Physiol., 558 (Pt 2), 465–478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Gonchar, L. Pang, B. Malitschek, et al., “Subcellular localization of GABA(B) receptor subunits in rat visual cortex,” J. Comp. Neurol., 431, No. 2, 182–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. C. M. Gray and W. Singer, “Stimulus-specifi c neuronal oscillations in orientation columns of cat visual cortex,” Proc. Natl. Acad. Sci. USA, 86, No. 5, 1698–1702 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. M. Hilscher, R. N. Leão, S. J. Edwards, et al., “Chrna2-Martinotti cells synchronize layer 5 type A pyramidal cells via rebound excitation,” PLoS Biol., 15, No. 2, e2001392 (2017).

  45. H. Hu and A. Agmon, “Properties of precise fi ring synchrony between synaptically coupled cortical interneurons depend on their mode of coupling,” J. Neurophysiol., 114, No. 1, 624–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. J. S. Isaacson and M. Scanziani, “How inhibition shapes cortical activity,” Neuron, 72, No. 2, 231–243 (2011), https://doi.org/10.1016/j.neuron.2011.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. X. Jiang, G. Wang, and J. Zhu, “The organization of two new cortical interneuronal circuits,” Nat. Neurosci., 16, No. 2, 210–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. X. Jiang, S. Shen, C. R. Cadwell, et al., “Principles of connectivity among morphologically defined cell types in adult neocortex,” Science, 350, No. 6264, aac9462 (2015).

  49. C. Kapfer, L. L. Glickfeld, B. V. Atallah, and M. Scanziani, “Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex,” Nat. Neurosci., 10, 743–753 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A. Karagiannis, T. Gallopin, C. Dávid, et al., “Classification of NPY-expressing neocortical interneurons,” J. Neurosci., 29, No. 11, 3642–3659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. M. Karnani, J. Jackson, I. Ayzenshtat, et al., “Opening holes in the blanket of inhibition: localized lateral disinhibition by VIP interneurons,” J. Neurosci., 36, 3471–3480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M. M. Karnani, J. Jackson, I. Ayzenshtat, et al., “Cooperative subnetworks of molecularly similar interneurons in mouse neocortex,” Neuron, 90, No. 1, 86–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. F. Karube, Y. Kubota, and Y. Kawaguchi, “Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes,” J. Neurosci., 24, No. 12, 2853–2865 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y. Kawaguchi, F. Karube, and Y. Kubota, “Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells,” Cereb. Cortex, 16, 696–711 (2006), https://doi.org/10.1093/cercor/bhj015.

    Article  PubMed  Google Scholar 

  55. Y. Kawaguchi and Y. Kubota, “Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide- containing cells among GABAergic cell subtypes in rat frontal cortex,” J. Neurosci., 16, No. 8, 2701–2715 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Y. Kawaguchi and Y. Kubota, “GABAergic cell subtypes and their synaptic connections in rat frontal cortex,” Cereb. Cortex, 7, No. 6, 476–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Y. Kawaguchi and T. Shindou, “Noradrenergic excitation and inhibition of gabaergic cell types in rat frontal cortex,” J. Neurosci., 18, No. 17, 6963–6976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. C. Koelbl, M. Helmstaedter, J. Lübke, and D. Feldmeyer, “A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity,” Cereb. Cortex, 25, 713–725 (2015), https://doi.org/10.1093/cercor/bht263.

    Article  PubMed  Google Scholar 

  59. R. Köhling, M. D’Antuono, R. Benini, et al., “Hypersynchronous ictal onset in the perirhinal cortex results from dynamic weakening in inhibition,” Neurobiol. Dis., 87, 1–10 (2016).

    Article  PubMed  Google Scholar 

  60. M. M. Kohl and O. Paulsen, “The roles of GABAB receptors in cortical network activity,” Adv. Pharmacol., 58, 205–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. A. M. Large, N. W. Vogler, S. Mielo, and A. M. Oswald, “Inhibition by somatostatin interneurons in olfactory cortex,” Front. Neural Circuits, 10, 62 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. S. H. Lee, J. Hjerling-Leffler, E. Zagha, et al., “The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors,” J. Neurosci., 30, No. 50, 16796–16808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. S. Lee, I. Kruglikov, Z. J. Huang, et al., “A disinhibitory circuit mediates motor integration in the somatosensory cortex,” Nat. Neurosci., 16, No. 11, 1662–1670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. A. J. Lee, G. Wang, X. Jiang, et al., “Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits,” Cereb. Cortex, 25, No. 8, 2114–2126 (2015).

    Article  PubMed  Google Scholar 

  65. J.-F. Léger, E. A. Stern, A. Aertsen, and D. Heck, “Synaptic integration in rat frontal cortex shaped by network activity,” J. Neurophysiol., 93, 281–293 (2005).

    Article  PubMed  Google Scholar 

  66. L. Librizzi and M. de Curtis, “Epileptiform ictal discharges are prevented by periodic interictal spiking in the olfactory cortex,” Ann. Neurol., 53, No. 3, 382–389 (2003).

    Article  PubMed  Google Scholar 

  67. D. H. Lim, M. H. Mohajerani, J. Ledue, et al., “In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas,” Front. Neural Circuits, 6, 11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. K. P. Lillis, M. A. Kramer, J. Mertz, et al., “Pyramidal cells accumulate chloride at seizure onset,” Neurobiol. Dis., 47, No. 3, 358–366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. L. Liu, W. Ito, and A. Morozov, “GABAb receptor mediates opposing adaptations of GABA release from two types of prefrontal interneurons after observational fear,” Neuropsychopharmacology, 42, No. 6, 1272–1283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Y. Ma, H. Hu, A. S. Berrebi, et al., “Distinct subtypes of somatostatin- containing neocortical interneurons revealed in transgenic mice,” J. Neurosci., 26, No. 19, 5069–5082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. J. G. Mancilla, T. J. Lewis, D. J. Pinto, et al., “Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex,” J. Neurosci., 27, 2058–2073 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. E. O. Mann, C. A. Radcliffe, and O. Paulsen, “Hippocampal gamma- frequency oscillations: from interneurones to pyramidal cells, and back,” J. Physiol., 562, Pt. 1, 55–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. T. Mao, D. Kusefoglu, B. M. Hooks, et al., “Long-range neuronal circuits underlying the interaction between sensory and motor cortex,” Neuron, 72, No. 1, 111–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. F. Matyas, V. Sreenivasan, F. Marbach, et al., “Motor control by sensory cortex,” Science, 330, 1240 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. A. J. McDonald, F. Mascagni, and J. F. Muller, “Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala,” Brain Res., 1018, 147–158 (2004), https://doi.org/10.1016/j.brainres.2004.

    Article  CAS  PubMed  Google Scholar 

  76. S. Melzer, M. Michael, A. Caputi, et al., “Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex,” Science, 335, 1506–1510 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. M. Morishima, K. Kobayashi, S. Kato, et al., “Segregated excitatory- inhibitory recurrent subnetworks in layer 5 of the rat frontal cortex,” Cereb. Cortex, 27, No. 12, 5846–5857 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. S. F. Muldoon, V. Villette, T. F. Tressard, et al., “GABAergic inhibition shapes interictal dynamics in awake epileptic mice,” Brain, 138, Pt. 10, 2875–2890 (2015).

    Article  PubMed  Google Scholar 

  79. M. Murayama, E. Pérez-Garci, T. Nevian, et al., “Dendritic encoding of sensory stimuli controlled by deep cortical interneurons,” Nature, 457, No. 7233, 1137–1141 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. A. Naka and H. Adesnik, “inhibitory circuits in cortical layer 5,” Front. Neural Circuits, 10, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. G. T. Neske, S. L. Patrick, and B. W. Connors, “Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex,” J. Neurosci., 35, No. 3, 1089–1105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. R. A. Nicoll, R. C. Malenka, and J. A. Kauer, “Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system,” Physiol. Rev., 70, No. 2, 513–565 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. M. J. Nigro, Y. Hashikawa-Yamasaki, and B. Rudy, “Diversity and connectivity of layer 5 somatostatin-expressing interneurons in the mouse barrel cortex,” J. Neurosci., 38, No. 7, 1622–1633 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. Oláh, M. Füle, G. Komlósi, et al., “Regulation of cortical microcircuits by unitary GABAergic volume transmission,” Nature, 461, No. 7268, 1278–1281 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. S. Oláh, G. Komlósi, J. Szabadics, et al., “Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex,” Front. Neural Circuits, 1, 4 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  86. T. Otsuka and Y. Kawaguchi, “Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons,” J. Neurosci., 29, No. 34, 10533–10540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. L. Palmer, M. Murayama, and M. Larkum, “Inhibitory regulation of dendritic activity in vivo,” Front. Neural Circuits, 6, 26 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. L. M. Palmer, J. M. Schulz, S. C. Murphy, et al., “The cellular basis of GABA(B)-mediated interhemispheric inhibition,” Science, 335, No. 6071, 989–993 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. G. Panuccio, G. Curia, A. Colosimo, et al., “Epileptiform synchronization in the cingulate cortex,” Epilepsia, 50, No. 3, 521–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. C. C. Petersen and S. Crochet, “Synaptic computation and sensory processing in neocortical layer 2/3,” Neuron, 78, No. 1, 28–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. C. K. Pfeffer, M. Xue, M. He, et al., “Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons,” Nat. Neurosci., 16, No. 8, 1068–1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. C. J. Price, B. Cauli, E. R. Kovacs, et al., “Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area,” J. Neurosci., 25, No. 29, 6775–6786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. C. J. Price, R. Scott, D. A. Rusakov, and M. Capogna, “GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells,” J. Neurosci., 28, No. 27, 6974–6982 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. D. A. Prince, “Inhibition in ‘epileptic’ neurons,” Exp. Neurol., 21, No. 3, 307–321 (1968).

    Article  CAS  PubMed  Google Scholar 

  95. A. Pronneke, B. Scheuer, R. J. Wagener, et al., “Characterizing VIP Neurons in the barrel cortex of VIPcre/tdTomato mice reveals layer- specific differences,” Cereb. Cortex, 25, No. 12, 4854–4868 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. M. Rocco-Donovan, R. L. Ramos, S. Giraldo, and J. C. Brumberg, “Characteristics of synaptic connections between rodent primary somatosensory and motor cortices,” Somatosens. Mot. Res., 28, No. 3–4, 63–72 (2011).

    Article  PubMed  Google Scholar 

  97. A. K. Roopun, J. D. Simonotto, M. L. Pierce, et al., “A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex,” Proc. Natl. Acad. Sci. USA, 107, No. 1, 338–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. B. Rudy, G. Fishell, S. Lee, and J. Hjerling-Leffler, “Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons,” Dev. Neurobiol., 71, No. 1, 45–61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. H. R. Sabolek, W. B. Swiercz, Lillis K et al.,”A candidate mechanism underlying the variance of interictal spike propagation,” J. Neurosci., 32, No. 9, 3009–3021 (2012).

  100. R. Saffari, Z. Teng, M. Zhang, et al., “NPY+-, but not PV+-GABAergic neurons mediated long-range inhibition from infra- to prelimbic cortex,” Transl. Psychiatry, 6, e736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. D. B. Salkoff, E. Zagha, Ö. Yüzgeç, and D. A. McCormick, “Synaptic mechanisms of tight spike synchrony at gamma frequency in cerebral cortex,” J. Neurosci., 35, No. 28, 10236–10251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. C. A. Schevon, S. K. Ng, J. Cappell, et al., “Microphysiology of epileptiform activity in human neocortex,” J. Clin. Neurophysiol., 25, No. 6, 321–330 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. I. Scheyltjens and L. Arckens, “The current status of somatostatin- interneurons in inhibitory control of brain function and plasticity,” Neural Plast., 2016, 8723623 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. G. Silberberg and H. Markram, “Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells,” Neuron, 53, 735–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. A. Simon, S. Oláh, G. Molnár, et al., “Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex,” J. Neurosci., 25, No. 27, 6278–6285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. M. Steriade, A. Nuñez, and F. Amzica, “A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components,” J. Neurosci., 13, No. 8, 3252–3265 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. G. Tamás, A. Lorincz, A. Simon, and J. Szabadics, “Identifi ed sources and targets of slow inhibition in the neocortex,” Science, 299, No. 5614, 1902–1905 (2003).

    Article  PubMed  Google Scholar 

  108. I. Timofeev, F. Grenier, and M. Steriade, “The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike-wave electrographic seizures,” Neuroscience, 114, No. 4, 1115–1132 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. R. Tremblay, S. Lee, and B. Rudy, “GABAergic Interneurons in the neocortex: from cellular properties to circuits,” Neuron, 91, No. 2, 260–292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. A. J. Trevelyan, D. Sussillo, B. O. Watson, and R. Yuste, “Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex,” J. Neurosci., 26, No. 48, 12447–1255 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. A. Trevelyan, D. Sussillo, and R. Yuste, “Feedforward inhibition contributes to the control of epileptiform propagation speed,” J. Neurosci., 27, No. 13, 3383–3387 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. J. Urban-Ciecko and A. L. Barth, “Somatostatin-expressing neurons in cortical networks,” Nat. Rev. Neurosci., 17, No. 7, 401–409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. J. Urban-Ciecko, E. E. Fanselow, and A. L. Barth, “Neocortical somatostatin neurons reversibly silence excitatory transmission via GABAb receptors,” Curr. Biol., 25, No. 6, 722–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. M. P. Vanni and T. H. Murphy, “Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex,” J. Neurosci., 34, No. 48, 15931–15946 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. E. D. Vickers, C. Clark, D. Osypenko, et al., “Parvalbumininterneuron output synapses show spike-timing-dependent plasticity that contributes to auditory map remodeling,” Neuron, 99, No. 4, 720–735.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. J. Veit, R. Hakim, M. P. Jadi, et al., “Cortical gamma band synchronization through somatostatin interneurons,” Nat. Neurosci., 20, No. 7, 951–959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. L. Wang and A. Maffei, “Inhibitory plasticity dictates the sign of plasticity at excitatory synapses,” J. Neurosci., 34, No. 4, 1083–1093 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Y. Wang, F. B. Neubauer, H. R. Lüscher, and K. Thurley, “GABAB receptor-dependent modulation of network activity in the rat prefrontal cortex in vitro,” Eur. J. Neurosci., 31, No. 9, 1582–1594 (2010).

    PubMed  Google Scholar 

  119. Y. Wang, M. Toledo-Rodriguez, A. Gupta, et al., “Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat,” J. Physiol., 561, No. 1, 65–90 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. M. Wehr and A. M. Zador, “Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex,” Nature, 426, 442–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. O. W. Witte, “Physiological basis of pathophysiological brain rhythms,” Acta Neurobiol. Exp. (Wars.), 60, No. 2, 289–297 (2000).

    CAS  PubMed  Google Scholar 

  122. L. Yekhlef, G. L. Breschi, L. Lagostena, et al., “Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex,” J. Neurophysiol., 113, No. 5, 1616–1630 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. I. Yavorska and M. Wehr, “Somatostatin-expressing inhibitory interneurons in cortical circuits,” Front. Neural Circuits, 10, 76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. J. Zhu, M. Jiang, M. Yang, et al., “Membrane potential-dependent modulation of recurrent inhibition in rat neocortex,” PLoS Biol., 9, No. 3, e1001032 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Marchenko.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 53, No. 1, pp. 52–75, January–March, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenko, V.G., Zaichenko, M.I. GABAB Inhibition through Feedback Is Involved in the Synchronization of Interictal Spikes in the Cortex. Neurosci Behav Physi 52, 1506–1523 (2022). https://doi.org/10.1007/s11055-023-01381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01381-0

Keywords

Navigation