Skip to main content
Log in

Cerebral Organization of Working Memory in Delayed Copying of Broken Lines: Analysis of Potentials Associated with the Go Signal

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A group of adult subjects solved a working memory (WM) task involving delayed copying (drawing) of a polyline, presented either statically in the form of a picture or dynamically by showing a cursor moving along an invisible contour of the line. The combined effects of the trajectory presentation mode (static, dynamic) and the duration of retention of the representation in WM (the length of the delay in the go signal) on the potentials (ERP) associated with the presentation of the sound signal were studied. Five long-latency cortical ERP components were analyzed: N100, P200, P250, P300, and N400. N100 amplitude was shown to be statistically signifi cantly greater on static presentation of the broken line than on dynamic presentation but to be independent of delay duration. The amplitudes of the remaining components, conversely, depended on the magnitude of the delay but not on the presentation mode and were greater with longer delays. The discussion addresses the possibilities that (1) higher N100 amplitudes on static presentation of the broken line than during dynamic presentation are due to the additional involvement of top-down control at the relatively early stages of extracting information from WM and/or (2) that retention of the representation of the broken line in different visual sensory-specific zones is involved in WM depending on the presentation mode, different groups of auditory cortex neurons being involved in the activation of these zones in response to the auditory go signal. It is suggested that the dependence of the amplitude of the P200, P250, P300 and N400 components on the retention time of the representation of the polyline in WM is associated with the transformation of this representation from a sensory-specific format to an abstract format, as well as with preparation for subsequent motor reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasen, I. E. and Brunner, J. F., “Modulation of ERP components by task instructions in a cued go/no-go task,” Psychophysiology, 53, No. 2, 171–185 (2016).

    Article  PubMed  Google Scholar 

  • Absatova, K. A. and Kurgansky, A. V., “Does the way we memorize information depend on the way we are going to use it?” Psychol. J. High Sch. Econ., 13, No. 1, 177–191 (2016).

    Google Scholar 

  • Agam, Y. and Sekuler, R., “Interactions between working memory and visual perception: an ERP/EEG study,” NeuroImage, 36, No. 3), 933– 942 (2007).

    Article  PubMed  Google Scholar 

  • Alain, C., McDonald, K. L., Kovacevic, N., and McIntosh, A. R., “Spatiotemporal analysis of auditory “what” and “where” working memory,” Cereb. Cortex, 19, No. 2, 305–14 (2009).

    Article  PubMed  Google Scholar 

  • Bachiller, A., Romero, S., Molina, V., et al., “Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach,” Schizophr. Res., 169, No. 1–3, 318–325 (2015).

    Article  PubMed  Google Scholar 

  • Baddeley, A. D. and Hitch, G., “Working memory,” in: Psychology of Learning and Motivation, Academic Press (1974), Vol. 8, pp. 47–89.

    Article  Google Scholar 

  • Baddeley, A., “Working memory: theories, models, and controversies,” Annu. Rev. Psychol., 63, 1–29 (2012).

    Article  PubMed  Google Scholar 

  • Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L., “Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies,” Cereb. Cortex, 19, No. 12, 2767–2796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Boonstra, T. W., Powell, T. Y., Mehrkanoon, S., and Breakspear, M., “Effects of mnemonic load on cortical activity during visual working memory: linking ongoing brain activity with evoked responses,” Int. J. Psychophysiol., 89, No. 3, 409–418 (2013).

    Article  PubMed  Google Scholar 

  • Butler, D. L., Mattingley, J. B., Cunnington, R., and Suddendorf, T., “Mirror, mirror on the wall, how does my brain recognize my image at all?” PLoS One, 7, No. 2, e31452–e31452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappe, C., Morel, A., Barone, P., and Rouiller, E. M., “The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay,” Cereb. Cortex, 19, No. 9, 2025–2037 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh, S. E., Towers, J. P., Wallis, J. D., et al., “Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex,” Nat. Commun., 9, No. 1, 3498 (2018).

  • Chapman, R. M., Gardner, M. N., Mapstone, M., et al., “Memory timeline: Brain ERP C250 (not P300) is an early biomarker of short-term storage,” Brain Res., 1604, 74–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, R. M., McCrary, J. W., and Chapman, J. A., “Short-term memory: the “storage” component of human brain responses predicts recall,” Science, 202, No. 4373, 1211–1214 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Chikha, A. B., Khacharem, A., Trabelsi, K., and Bragazzi, N. L., “The Effect of spatial ability in learning from static and dynamic visualizations: A moderation analysis in 6-year-old children,” Front. Psychol., 12, No. 2085) (2021).

  • Chota, S. and Van der Stigchel, S., “Dynamic and flexible transformation and reallocation of visual working memory representations,” Vis. Cogn., 29, No. 7, 409–415 (2021).

    Article  Google Scholar 

  • Cocchi, L., Schenk, F., Volken, H., et al., “Visuo-spatial processing in a dynamic and a static working memory paradigm in schizophrenia,” Psychiatry Res., 152, No. 2–3, 129–142 (2007).

    Article  PubMed  Google Scholar 

  • Curtis, C. E. and Sprague, T. C., “persistent activity during working memory from front to back,” Front. Neural Circuits, 15, 696060 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong, M. C., Brascamp, J. W., Kemner, C., et al., “Implicit perceptual memory modulates early visual processing of ambiguous images,” J. Neurosci., 34, No. 30, 9970–9981 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Esposito, M. and Postle, B. R., “The cognitive neuroscience of working memory,” Annu. Rev. Psychol., 66, 115–142 (2015).

    Article  PubMed  Google Scholar 

  • Donato, R., Pavan, A., and Campana, G., “Investigating the interaction between form and motion processing: A review of basic research and clinical evidence,” Front. Psychol., 11, 566848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumoulin, S. O., Hess, R. F., May, K. A., et al., “Contour extracting networks in early extrastriate cortex,” J. Vis., 14, No. 5, 18 (2014).

  • Finnigan, S., O’Connell, R. G., Cummins, T. D., et al., “ERP measures indicate both attention and working memory encoding decrements in aging,” Psychophysiology, 48, No. 5, 601–611 (2011).

    Article  PubMed  Google Scholar 

  • Fogarty, J. S., Barry, R. J., and Steiner, G. Z., “The first 250 ms of auditory processing: no evidence of early processing negativity in the go/ nogo task,” Sci. Rep., 10, No. 1, 4041 (2020).

  • Gayet, S., Paffen, C. L. E., and Van der Stigchel, S., “Visual working memory storage recruits sensory processing areas,” Trends Cogn. Sci., 22, No. 3, 189–190 (2018).

    Article  PubMed  Google Scholar 

  • Gilmore, C. S., Clementz, B. A., and Berg, P., “Hemispheric differences in auditory oddball responses during monaural versus binaural stimulation,” Int. J. Psychophysiol., 73, No. 3, 326–333 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajcak, G. and Foti, D., “Significance? Empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review,” Psychophysiology, 57, No. 7, e13570 (2020).

  • Horváth, J., “Action-related auditory ERP attenuation: Paradigms and hypotheses,” Brain Res., 1626, 54–65 (2015).

    Article  PubMed  Google Scholar 

  • Hurlstone, M. J., Hitch, G. J., and Baddeley, A. D., “Memory for serial order across domains: An overview of the literature and directions for future research,” Psychol. Bull., 140, No. 2, 339–373 (2014).

    Article  PubMed  Google Scholar 

  • Jaroslawska, A. J., Gathercole, S. E., and Holmes, J., “Following instructions in a dual-task paradigm: Evidence for a temporary motor store in working memory,” Q. J. Exp. Psychol. (Hove), 71, No. 11, 2439– 2449 (2018).

    Article  PubMed  Google Scholar 

  • Katayama, J. and Polich, J., “Auditory and visual P300 topography from a 3 stimulus paradigm,” Clin. Neurophysiol., 110, No. 3, 463–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Key, A. P. F., Dove, G. O., and Maguire, M. J., “Linking brainwaves to the brain: An ERP primer,” Dev. Neuropsychol., 27, No. 2, 183–215 (2005).

    Article  PubMed  Google Scholar 

  • Kirmse, U., Jacobsen, T., and Schröger, E., “Familiarity affects environmental sound processing outside the focus of attention: an event-related potential study,” Clin. Neurophysiol., 120, No. 5, 887–896 (2009).

    Article  PubMed  Google Scholar 

  • Korneev, A. A. and Kurgansky, A. V., “Influence of the method of visual presentation of a complex trajectory on the time parameters of its delayed motor reproduction,” Psikhol. Issled., 7, No. 37, 11 (2014a), http://psystudy.ru..

  • Korneev, A. A. and Kurgansky, A. V., “Internal representation of movements series on reproduction of a static pattern and the trajectories of a moving object,” Zh. Vyssh. Nerv. Deyat., 63, No. 4, 437–450 (2013).

    CAS  Google Scholar 

  • Korneev, A. A. and Kurgansky, A. V., “Transformation of the order of movements in series specified by a visual sample,” Vestn. Mosk. Univ. Ser. 14, Psikhologiya, 2, 61–74 (2014b).

  • Korneev, A. A., Lomakin, D. I., and Kurgansky, A. V., “Delayed copying of unfamiliar contour images: does the decrease in reaction time with increasing delay reflect a change in the internal representation of the future movement?” Zh. Vyssh. Nerv. Deyat., 66, No. 1, 51–61 (2016a).

    CAS  Google Scholar 

  • Korneev, A. A., Lomakin, D. I., Kurgansky, A. V., and Machinskaya, R. I., “Delayed copying of unfamiliar contour images: analysis of stimulus presentation-related potentials,” Zh. Vyssh. Nerv. Deyat., 66, No. 4, 470–483 (2016b).

    CAS  Google Scholar 

  • Kriegeskorte, N., Sorger, B., Naumer, M., et al., “Human cortical object recognition from a visual motion flowfield,” J. Neurosci., 23, No. 4, 1451–1463 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson, J. and Heeger, D. J., “Two retinotopic visual areas in human lateral occipital cortex,” J. Neurosci., 26, No. 51, 13,128–13,142 (2006).

  • Lee, S. H. and Baker, C. I., “Multi-voxel decoding and the topography of maintained information during visual working memory,” Front. Syst. Neurosci., 10, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefebvre, C. D., Marchand, Y., Eskes, G. A., and Connolly, J. F., “Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task,” Clin. Neurophysiol., 116, No. 7, 1665–1680 (2005).

    Article  PubMed  Google Scholar 

  • Li, Y., Wang, Y., and Li, S., “Recurrent processing of contour integration in the human visual cortex as revealed by fMRI-guided TMS,” Cereb. Cortex, 29, No. 1, 17–26 (2019).

    Article  PubMed  Google Scholar 

  • Luck, S. J. and Kappenman, E. S., “ERP components and selective attention,” in: The Oxford Handbook of Event-Related Potential Components, Oxford University Press, New York, NY, US (2012), pp. 295–327.

    Google Scholar 

  • Luck, S. J., “Event-related potentials,” in: APA Handbook of Research Methods in Psychology, Vol 1, Foundations, Planning, Measures, and Psychometrics, American Psychological Association, Washington, DC, US (2012), pp. 523–546).

  • Machado, S., Arias-Carrión, O., Sampaio, I., et al., “Source imaging of P300 visual evoked potentials and cognitive functions in healthy subjects,” Clin. EEG Neurosci., 45, No. 4, 262–268 (2014).

    Article  PubMed  Google Scholar 

  • Meyers, E. M., “Dynamic population coding and its relationship to working memory,” J. Neurophysiol., 120, No. 5, 2260–2268 (2018).

    Article  PubMed  Google Scholar 

  • Murray, J. D., Bernacchia, A., Roy, N. A., et al., “Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex,” Proc. Natl. Acad. Sci. USA, 114, No. 2, 394–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Neumann, H. and Sepp, W., “Recurrent V1–V2 interaction in early visual boundary processing,” Biol. Cybern., 81, No. 5–6, 425–444 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Perry, C. J. and Fallah, M., “Feature integration and object representations along the dorsal stream visual hierarchy,” Front. Comput. Neurosci., 8, 84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Petro, L. S., Paton, A. T., and Muckli, L., “Contextual modulation of primary visual cortex by auditory signals,” Philos. Trans. R. Soc. Lond., B, Biol. Sci., 372, No. 1714, 20160104 (2017).

  • Picchioni, M., Matthiasson, P., Broome, M., et al., “Medial temporal lobe activity at recognition increases with the duration of mnemonic delay during an object working memory task,” Hum. Brain Mapp., 28, No. 11, 1235–1250 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickering, S. J., Gathercole, S. E., Hall, M., and Lloyd, S. A., “Development of memory for pattern and path: further evidence for the fractionation of visuo-spatial memory,” Q. J. Exp. Psychol. A, 54, No. 2, 397–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Polich, J. and Kok, A., “Cognitive and biological determinants of P300: an integrative review,” Biol. Psychol., 41, No. 2, 103–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Polich, J., “Updating P300: an integrative theory of P3a and P3b,” Clin. Neurophysiol., 118, No. 10, 2128–2148 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohrbaugh, J. W., Donchin, E., and Eriksen, C. W., “Decision making and the P300 component of the cortical evoked response,” Percept. Psychophys., 15, No. 2, 368–374 (1974).

    Article  Google Scholar 

  • Rose, N. S., “The dynamic-processing model of working memory,” Curr. Dir. Psychol. Sci., 29, No. 4, 378–387 (2020).

    Article  Google Scholar 

  • Rugg, M. D. and Curran, T., “Event-related potentials and recognition memory,” Trends Cogn. Sci., 11, No. 6, 251–257 (2007).

    Article  PubMed  Google Scholar 

  • Saenz, M., Lewis, L. B., Huth, A. G., et al., “visual motion area MT+/ V5 responds to auditory motion in human sight-recovery subjects,” J. Neurosci., 28, No. 20, 5141–5148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schomaker, J., “The relationship between response time and the strength of top-down attentional control: An ERP study,” J. Eur. Psychol. Stud., 1, No. 1, p.Art.2 (2009).

  • Schuermann, B., Endrass, T., and Kathmann, N., “Neural correlates of feedback processing in decision-making under risk,” Front. Hum. Neurosci., 6, No. 204) (2012).

  • Scimeca, J. M., Kiyonaga, A., and D’Esposito, M., “Reaffirming the sensory recruitment account of working memory,” Trends Cogn. Sci., 22, No. 3, 190–192 (2018).

    Article  PubMed  Google Scholar 

  • Shpaner, M., Molholm, S., Forde, E., and Foxe, J. J., “Disambiguating the roles of area V1 and the lateral occipital complex (LOC) in contour integration,” NeuroImage, 69, 146–156 (2013).

    Article  PubMed  Google Scholar 

  • Spaak, E., Watanabe, K., Funahashi, S., and Stokes, M. G., “Stable and dynamic coding for working memory in primate prefrontal cortex,” J. Neurosci., 37, No. 27, 6503–6516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes, M. G., “’Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework,” Trends Cogn. Sci., 19, No. 7, 394–405 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Twomey, D. M., Murphy, P. R., Kelly, S. P., and O’Connell, R. G., “The classic P300 encodes a build-to-threshold decision variable,” Eur. J. Neurosci., 42, No. 1, 1636–1643 (2015).

    Article  PubMed  Google Scholar 

  • Verleger, R., “Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b,” Psychophysiology, 57, No. 7, e13542 (2020).

  • Woldorff, M. G., Gallen, C. C., Hampson, S. A., et al., “Modulation of early sensory processing in human auditory cortex during auditory selective attention,” Proc. Natl. Acad. Sci. USA, 90, No. 18, 8722– 8726 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff, M. and Vann, S. D., “The cognitive thalamus as a gateway to mental representations,” J. Neurosci., 39, No. 1, 3–14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worden, R., Bennett, M. S., and Neacsu, V., “The thalamus as a blackboard for perception and planning,” Front. Behav. Neurosci., 15, 633872 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wronka, E., Kaiser, J., and Coenen, A. M., “Neural generators of the auditory evoked potential components P3a and P3b,” Acta Neurobiol. Exp. (Wars.), 72, No. 1, 51–64 (2012).

    PubMed  Google Scholar 

  • Yang, T. X., Allen, R. J., Yu, Q. J., and Chan, R. C. K., “The infl uence of input and output modality on following instructions in working memory,” Sci. Rep., 5, 17657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y.-F., Brunet-Gouet, E., Burca, M., et al., “Brain processes while struggling with evidence accumulation during facial emotion recognition: An ERP study,” Front. Hum. Neurosci., 14, 340–340 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Deshpande, A., Benson, C., et al., “The adaptive pattern of the auditory N1 peak revealed by standardized low-resolution brain electromagnetic tomography,” Brain Res., 1400, 42–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, R., Li, M., Chen, Q., et al., “The P300 event-related potential component and Ccgnitive impairment in epilepsy: A systematic review and meta-analysis,” Front. Neurol., 10, No. 943 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kurgansky.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 3, pp. 387–404, May–June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgansky, A.V., Lomakin, D.I., Korneev, A.A. et al. Cerebral Organization of Working Memory in Delayed Copying of Broken Lines: Analysis of Potentials Associated with the Go Signal. Neurosci Behav Physi 52, 1448–1460 (2022). https://doi.org/10.1007/s11055-023-01376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01376-x

Keywords

Navigation