Skip to main content
Log in

The Speed of Hippocampal Processing of Contextual Information is Linked with Its Congruence with Previously Developed Schemas

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

One of the most important mechanisms underlying the flexible regulation of behavior is subjects’ ability to compare and integrate information about the world with information constantly coming from outside. We report here studies using stereoelectroencephalography to record the hippocampal local field potential in subjects performing a task of assessing the congruence of “object–context” stimulus pairs. These investigations showed that the hippocampus is involved in processing object-context congruence information. Processing of information congruent to previously formed semantic knowledge is accompanied by earlier hippocampal activation than processing information requiring establishment of new associative links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. C., “Role of the reader’s schema in comprehension, learning, and memory,” in: Theoretical Models and Processes of Literacy, Alvermann, D. E. et al. (eds.), Routledge, New York (2018), pp. 136–145.

    Chapter  Google Scholar 

  • Axmacher, N., Cohen, M. X., Fell, J., et al., “Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens,” Neuron, 65, No. 4, 541–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Axmacher, N., Elger, C. E., and Fell, J., “Working memory-related hippocampal deactivation interferes with long-term memory formation,” J. Neurosci., 29, No. 4, 1052–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett, F. C. and Burt, C., “Remembering: a study in experimental and social psychology,” Br. J. Educ. Psychol., 3, No. 2, 187–192 (1933).

    Article  Google Scholar 

  • Bermúdez-Margaretto, B., Beltrán, D., Cuetos, F., and Domínguez, A., “Brain signatures of new (pseudo-) words: Visual repetition in associative and non-associative contexts,” Front. Hum. Neurosci., 12, 354 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. and Llinás, R., “Space and time in the brain,” Science, 358, No. 6362, 482–485 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. and Tingley, D., “Space and time: The hippocampus as a sequence generator,” Trends Cogn. Sci., 22, No. 10, 853–869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G., Anastassiou, C. A., and Koch, C., “The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes,” Nat. Rev. Neurosci., 13, No. 6, 407–420 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, M. X., Elger, C. E., and Ranganath, C., “Reward expectation modulates feedback-related negativity and EEG spectra,” NeuroImage, 35, No. 2, 968–978 (2007).

    Article  PubMed  Google Scholar 

  • Davis, C. P., Altmann, G. T. M., and Yee, E., “Situational systematicity: A role for schema in understanding the differences between abstract and concrete concepts,” Cogn. Neuropsychol., 37, No. 1–2, 142–153 (2020).

  • Eichenbaum, H., “Memory: organization and control,” Annu. Rev. Psychol., 68, No. 1, 19–45 (2017).

    Article  PubMed  Google Scholar 

  • Fernández, G. and Morris, R. G. M., “Memory, novelty and prior knowledge,” Trends Neurosci., 41, No. 10, 654–659 (2018).

    Article  PubMed  Google Scholar 

  • Frank, D., Montaldi, D., Wittmann, B., and Talmi, D., “Beneficial and detrimental effects of schema incongruence on memory for contextual events,” Learn. Mem., 25, No. 8, 352–360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh, V. E. and Gilboa, A., “What is a memory schema? A historical perspective on current neuroscience literature,” Neuropsychologia, 53, No. 1, 104–114 (2014).

    Article  PubMed  Google Scholar 

  • Gilboa, A. and Marlatte, H., “Neurobiology of schemas and schema-mediated memory,” Trends Cogn. Sci., 21, No. 8, 618–631 (2017).

    Article  PubMed  Google Scholar 

  • Ivashkina, O. I., Toropova, K. A., Roshchina, M. A., and Anokhin, K. V., “Formation and retrieval of associative memory for complex signals in mice: specifi c involvement of hippocampal field CA1 neurons,” Zh. Vyssh. Nerv. Deyat., 70, No. 3, 326–340 (2020).

    Google Scholar 

  • Korsakov, S. S., “A medical-biological study of one form of memory impairment,” in: The Psychology of Memory: A Reader, CheRo, Moscow (1998), pp. 62–75.

  • Köster, M., Finger, H., Graetz, S., et al., “Theta-gamma coupling binds visual perceptual features in an associative memory task,” Sci. Rep., 8, No. 1, 1–9 (2018).

    Article  Google Scholar 

  • Kutas, M. and Hillyard, S. A., “Reading between the lines: Event-related brain potentials during natural sentence processing,” Brain Lang., 11, No. 2, 354–373 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Leont’ev, A. N., The Development of Memory: an Experimental Study of the Development of Higher Psychological Functions, Smysl, Moscow (2003), pp. 27–199.

  • Li, F., Yi, C., Jiang, Y., et al., “Different contexts in the oddball paradigm induce distinct brain networks in generating the P300,” Front. Hum. Neurosci., 12, January, 1–10 (2019).

    Google Scholar 

  • Lisman, J., Buzsáki, G., Eichenbaum, H., et al., “Viewpoints: How the hippocampus contributes to memory, navigation and cognition,” Nat. Neurosci., 20, No. 11, 1434–1447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, W. and Guan, J.-S., “Do brain oscillations orchestrate memory?” Brain Sci. Adv., 4, No. 1, 16–33 (2018).

    Article  Google Scholar 

  • Miller, J., Watrous, A. J., Tsitsiklis, M., et al., “Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation,” Nat. Commun., 9, No. 1, 2423 (2018).

  • Milner, B., Corkin, S., and Teuber, H.-L., “Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of HM,” Neuropsychologia, 6, No. 3, 215–234 (1968).

    Article  Google Scholar 

  • Mohan, H., Verhoog, M. B., Doreswamy, K. K., et al., “Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex,” Cereb. Cortex, 25, No. 12, 4839–4853 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Molnár, G., Oláh, S., Komlósi, G., et al., “Complex events initiated by individual spikes in the human cerebral cortex,” PLoS Biol., 6, No. 9, 1842–1849 (2008).

    Article  Google Scholar 

  • Morett, L. M., Landi, N., Irwin, J., and McPartland, J. C., “N400 amplitude, latency, and variability reflect temporal integration of beat gesture and pitch accent during language processing,” Brain Res., 1747, 147059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris, R. G. M., “Theories of hippocampal function,” in: The Hippocampus Book, Andersen, P. et al. (eds.), Oxford University Press, Oxford, UK (2006), pp. 581–713.

    Google Scholar 

  • Murray, E. A., Wise, S. P., and Graham, K. S., “Representational specializations of the hippocampus in phylogenetic perspective,” Neurosci. Lett., 680, 4–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Nadel, L., Campbell, J., and Ryan, L., “Autobiographical memory retrieval and hippocampal activation as a function of repetition and the passage of time,” Neural Plast., 2007, 1–14 (2007).

    Article  Google Scholar 

  • Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M., “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci., 2011, 1–9 (2011).

    Article  Google Scholar 

  • O’Reilly, R. C. and Rudy, J. W., “Conjunctive representations in learning and memory: Principles of cortical and hippocampal function,” Psychol. Rev., 108, No. 2, 311–345 (2001).

    Article  PubMed  Google Scholar 

  • Parvizi, J. and Kastner, S., “Promises and limitations of human intracranial electroencephalography,” Nat. Neurosci., 21, No. 4, 474–483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piaget, J., The Psychology of Intelligence [Russian translation], Piter, St. Petersburg (2003).

    Book  Google Scholar 

  • Polich, J., “Updating P300: an integrative theory of P3a and P3b,” Clin. Neurophysiol., 118, No. 10, 2128–2148 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Staresina, B. P., Fell, J., Do Lam, A. T. A., et al., “Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex,” Nat. Neurosci., 15, No. 8, 1167–1173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staresina, B. P., Fell, J., Dunn, J. C., et al., “Using state-trace analysis to dissociate the functions of the human hippocampus and perirhinal cortex in recognition memory,” Proc. Natl. Acad. Sci. USA, 110, No. 8, 3119–3124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staresina, B. P., Reber, T. P., Niediek, J., et al., “Recollection in the human hippocampal-entorhinal cell circuitry,” Nat. Commun., 10, No. 1, 1503 (2019).

  • Stark, S. M., Reagh, Z. M., Yassa, M. A., and Stark, C. E. L., “What’s in a context? Cautions, limitations, and potential paths forward,” Neurosci. Lett., 680, 77–87 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Strange, B. A., Witter, M. P., Lein, E. S., and Moser, E. I., “Functional organization of the hippocampal longitudinal axis,” Nat. Rev. Neurosci., 15, No. 10, 655–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Sutton, S., Braren, M., Zubin, J., and John, E. R., “Evoked-potential correlates of stimulus uncertainty,” Science, 150, No. 3700, 1187–1188 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Tadel, F., Baillet, S., Mosher, J. C., et al., “Brainstorm: A user-friendly application for MEG/EEG analysis,” Comput. Intell. Neurosci., 2011, 1–13 (2011).

    Article  Google Scholar 

  • Tonegawa, S., Morrissey, M. D., and Kitamura, T., “The role of engram cells in the systems consolidation of memory,” Nat. Rev. Neurosci., 19, No. 8, 485–498 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Toropova, K. A., Troshev, D. V., Ivashkina, O. I., and Anokhin, K. V., “Activation of c-fos expression in the retrosplenial cortex but not the hippocampus is accompanied by formation of associations between context and the unconditioned stimulus and its subsequent retrieval in mice,” Zh. Vyssh. Nerv. Deyat., 68, No. 6, 759–774 (2018).

    Google Scholar 

  • Tulving, E., “Episodic and semantic memory,” in: Organization of Memory, Tulving, E. and Donaldson, W. (eds.), Academic Press, New York (1972), pp. 381–403.

    Google Scholar 

  • van der Linden, M., Berkers R. M. W. J., Morris, R. G. M., and Fernández, G., “Angular gyrus involvement at encoding and retrieval is associated with durable but less specifi c memories,” J. Neurosci., 37, No. 39, 9474–9485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kesteren, M. T. R., Beul, S. F., Takashima, A., et al., “Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent,” Neuropsychologia, 51, No. 12, 2352–2359 (2013).

    Article  PubMed  Google Scholar 

  • van Kesteren, M. T. R., Ruiter, D. J., Fernández, G., and Henson, R. N., “How schema and novelty augment memory formation,” Trends Neurosci., 35, No. 4, 211–219 (2012).

    Article  PubMed  Google Scholar 

  • Van Strien, J. W., Hagenbeek, R. E., Stam, C. J., et al., “Changes in brain electrical activity during extended continuous word recognition,” NeuroImage, 26, No. 3, 952–959 (2005).

    Article  PubMed  Google Scholar 

  • Vogel, S., Kluen, L. M., Fernández, G., and Schwabe, L., “Stress leads to aberrant hippocampal involvement when processing schema-related information,” Learn. Mem., 25, No. 1, 21–30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia, X. and Hu, L., “EEG: Neural basis and measurement,” in: EEG Signal Processing and Feature Extraction, Springer Singapore, Singapore (2019), pp. 7–21.

    Chapter  Google Scholar 

  • Yaple, Z., Shestakova, A., and Klucharev, V., “Feedback-related negativity reflects omission of monetary gains: Evidence from ERP gambling study,” Neurosci. Lett., 686, No. July, 145–149 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Youngerman, B. E., Khan, F. A., and McKhann, G. M., “Stereoelectroencephalography in epilepsy, cognitive neurophysiology, and psychiatric disease: safety, efficacy, and place in therapy,” Neuropsychiatr. Dis. Treat., 15, 1701–1716 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vorobiova.

Additional information

E. F. Pavone is deceased

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 3, pp. 360–369, May–June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobiova, A.N., Fedele, T., Pavone, E.F. et al. The Speed of Hippocampal Processing of Contextual Information is Linked with Its Congruence with Previously Developed Schemas. Neurosci Behav Physi 52, 1429–1435 (2022). https://doi.org/10.1007/s11055-023-01374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01374-z

Keywords

Navigation