Skip to main content

Advertisement

Log in

Mechanisms of Apoptosis in Drug-Resistant Epilepsy

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Epilepsy is a chronic neurological disease with regular spontaneous seizures associated with neuroinflammatory, autoimmune, and neurodegenerative processes. Approximately 40% of patients have drug-resistant forms of epilepsy, increasing the risk of premature death, injury, irreversible brain damage, psychosocial dysfunction, and reduced quality of life. Apoptosis of neurons and glial cells in the brain is of great importance in the pathogenesis of epilepsy, especially the drug-resistant forms. Studies of the mechanisms of apoptosis are required for creation of new-generation neuroprotective and anticonvulsant drugs which will also be effective in drug-resistant epilepsy. The aim of the present work was to analyze the mechanisms and role of apoptosis in epileptogenesis and the formation of resistance. This review addresses current data on the main mechanisms of apoptosis operating in epilepsy, especially its drug-resistant forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Cardenas-Rodriguez, B. Huerta-Gertrudis, L. Rivera-Espinosa, et al., “Role of oxidative stress in refractory epilepsy: Evidence in patients and experimental models,” Int. J. Mol. Sci., 14, 1455–1476 (2013), https://doi.org/10.3390/ijms14011455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. Espinosa-Garcia, H. Zeleke, and A. Rojas, “Impact of stress on epilepsy: focus on neuroinflammation – A mini review,” Int. J. Mol. Sci., 22, No. 8, 4061 (2021), https://doi.org/10.3390/ijms22084061.

  3. D. C. Henshall and R. P. Simon, “Epilepsy and apoptosis pathways,” J. Cereb. Blood Flow Metab., 25, No. 12, 1557–1572 (2005), https://doi.org/10.1038/sj.jcbfm.9600149.

    Article  CAS  PubMed  Google Scholar 

  4. E. Beghi, G. Giussani, and J. W. Sander, “The natural history and prognosis of epilepsy,” Epileptic Disord., 17, No. 3, 243–253 (2015), https://doi.org/10.1684/epd.2015.0751.

    Article  PubMed  Google Scholar 

  5. C. M. DeGiorgio, A. Curtis, A. Carapetian, et al., “Why are epilepsy mortality rates rising in the United States? A population-based multiple cause-of-death study,” BMJ Open, 10, No. 8, e035767 (2020), https://doi.org/10.1136/bmjopen-2019-035767.

  6. S. D. Reddy, I. Younus, V. Sridhar, and D. S. Reddy, “Neuroimaging biomarkers of experimental epileptogenesis and refractory epilepsy,” Int. J. Mol. Sci., 20, No. 1, 220 (2019), https://doi.org/10.3390/ijms20010220.

  7. P. Kwan, A. Arzimanoglou, A. T. Berg, et al., “Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies,” Epilepsia, 51, No. 6, 1069–1077 (2010), https://doi.org/10.1111/j.1528-1167.2009.02397.x.

    Article  CAS  PubMed  Google Scholar 

  8. T.-R. Li, Y.-J. Jia, Q. Wang, et al., “Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy,” Brain Res., 1700, 56–65 (2018), https://doi.org/10.1016/j.brainres.2018.07.013.

    Article  CAS  PubMed  Google Scholar 

  9. J. Haarbauer-Krupa, M. J. Pugh, E. M. Prager, et al., “Epidemiology of chronic effects of traumatic brain injury,” J. Neurotrauma, 34, No. 6, 34–39 (2021), https://doi.org/10.1089/neu.2021.0062.

    Article  Google Scholar 

  10. J. N. Pearson-Smith and M. Patel, “Metabolic dysfunction and oxidative stress in epilepsy,” Int. J. Mol. Sci., 18, No. 11, 2365 (2017), https://doi.org/10.3390/ijms18112365.

  11. E. Beghi, “The epidemiology of epilepsy,” Neuroepidemiology, 54, No. 2, 185–191 (2020), https://doi.org/10.1159/000503831.

    Article  PubMed  Google Scholar 

  12. M. Ananias, T. D’Souza-Li, and L. D’Souza-Li, “Apoptosis through death receptors in temporal lobe epilepsy-associated hippocampal sclerosis,” Mediators Inflamm., 2016, 8290562 (2016), https://doi.org/10.1155/2016/8290562.

  13. J. Choi, S. A. Choi, S. Kim, et al., “Association of tumor necrosis factor-α gene promotor variant, not interleukin-10, with febrile seizures and genetic epilepsy with febrile seizure plus,” Ann. Child Neurol., 27, No. 2, 38–45 (2019), https://doi.org/10.26815/acn.2019.00038.

    Article  Google Scholar 

  14. Y. Hao, S. Bai, J. Peng, et al., “TRIM27-mediated ubiquitination of PPARγ promotes glutamate-induced cell apoptosis and inflammation,” Exp. Cell Res., 400, No. 1, 112437 (2021), https://doi.org/10.1016/j.yexcr.2020.112437.

  15. K. I. Strauss and K. V. Elisevich, “Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy,” J. Neuroinflammation, 13, No. 1, 270 (2016), https://doi.org/10.1186/s12974-016-0727-z.

  16. O. C. Gonzalez, G. P. Krishnan, I. Timofeev, and M. Bazhenov, “Ionic and synaptic mechanisms of seizure generation and epileptogenesis,” Neurobiol. Dis., 130, 104485 (2019), https://doi.org/10.1016/j.nbd.2019.104485.

  17. T.-K. Lin, S.-D. Chen, K.-J. Lin, Y.-C. Chuang, “Seizure-induced oxidative stress in status epilepticus: is antioxidant beneficial?” Antioxidants (Basel), 9, No. 11, 1029 (2020), https://doi.org/10.3390/antiox9111029.

  18. H. Wuab, Q. Menga, Y. Zhang, et al., “Upregulated Nmnat2 causes neuronal death and increases seizure susceptibility in temporal lobe epilepsy,” Brain Res. Bull., 167, 1–10 (2021), https://doi.org/10.1016/j.brainresbull.2020.11.019.

    Article  CAS  Google Scholar 

  19. Y. Wu, M. Chen, and J. Jiang, “Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling,” Mitochondrion, 49, 35–45 (2019), https://doi.org/10.1016/j.mito.2019.07.003.

    Article  CAS  PubMed  Google Scholar 

  20. U. Geronzi, F. Lotti, and S. Grosso, “Oxidative stress in epilepsy,” Expert Rev. Neurother., 18, No. 5, 427–434 (2018), https://doi.org/10.1080/14737175.2018.1465410.

    Article  CAS  PubMed  Google Scholar 

  21. U. P. Kundap, Y. N. Paudel, and M. F. Shaikh, “Animal models of metabolic epilepsy and epilepsy associated metabolic dysfunction: A systematic review,” Pharmaceuticals, 13, No. 6, 106 (2020), https://doi.org/10.3390/ph13060106.

  22. C. Espinos, M. I. Galindo, M. A. García-Gimeno, et al., “Oxidative stress, a crossroad between rare diseases and neurodegeneration,” Antioxidants, 9, No. 4, 313 (2020), https://doi.org/10.3390/antiox9040313.

  23. S. Liu, Z. Jin, Y. Zhang, et al., “The glucagon-like peptide-1 analogue liraglutide reduces seizures susceptibility, cognition dysfunction and neuronal apoptosis in a mouse model of Dravet syndrome,” Front. Pharmacol., 11, 136 (2020), https://doi.org/10.3389/fphar.2020.00136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. Chen, Q. Mei, L. Wang, et al., “TIGAR suppresses seizures induced by kainic acid through inhibiting oxidative stress and neuronal apoptosis,” Biochem. Biophys. Res. Commun., 515, No. 3, 436–441 (2019), https://doi.org/10.1016/j.bbrc.2019.05.156.

    Article  CAS  PubMed  Google Scholar 

  25. Q. Su, B. Zheng, C. Wang, et al., “Oxidative stress induces neuronal apoptosis through suppressing transcription factor EB phosphorylation at Ser467,” Cell. Physiol. Biochem., 46, No. 4, 1536–1554 (2018), https://doi.org/10.1159/000489198.

    Article  CAS  PubMed  Google Scholar 

  26. P. Hashemi, J. F. Babaei, S. Vazifekhah, and F. Nikbakht, “Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway,” Iran J. Basic Med. Sci., 22, No. 7, 752–758 (2019), https://doi.org/10.22038/ijbms.2019.33892.8064.

    Article  PubMed  PubMed Central  Google Scholar 

  27. V. Uytterhoeven, N. Kaempf, and P. Verstreken, “Mitochondria reset epilepsy,” Neuron, 102, No. 5, 907–910 (2019), https://doi.org/10.1016/j.neuron.2019.05.023.

    Article  CAS  PubMed  Google Scholar 

  28. F. Chan, N. Z. Lax, C. M. Voss, et al., “The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction,” Brain, 142, No. 2, 391–411 (2019), https://doi.org/10.1093/brain/awy320.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Y. Zhang, M. Zhang, W. Zhu, et al., “Succinate accumulation induces mitochondrial reactive oxygen species generation and promotes status epilepticus in the kainic acid rat model,” Redox Biol., 28, 101365 (2020), https://doi.org/10.1016/j.redox.2019.101365.

  30. L. B. Gano, L.-P. Liang, K. Ryan, et al., “Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy,” Free Radic. Biol. Med., 123, 116–124 (2018), https://doi.org/10.1016/j.freeradbiomed.2018.05.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Finsterer and F. A. Scorza, “Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival,” Epilepsy Res., 136, 5–11 (2017), https://doi.org/10.1016/j.eplepsyres.2017.07.003.

    Article  CAS  PubMed  Google Scholar 

  32. R. P. Saneto, “Epilepsy and mitochondrial dysfunction: a single center’s experience.,” J. Inborn Errors metab. Screen., 5, 2326409817733012 (2017), https://doi.org/10.1177/2326409817733012.

    Article  Google Scholar 

  33. A. Vasquez, R. Farias-Moeller, and W. Tatum, “Pediatric refractory and super-refractory status epilepticus,” Seizure, 68, 62–71 (2019), https://doi.org/10.1016/j.seizure.2018.05.012.

    Article  PubMed  Google Scholar 

  34. C. D. Nigoghossian, C. Rubinos, A. Alkhachroum, and J. Claassen, “Status epilepticus – time is brain and treatment considerations,” Curr. Opin. Crit. Care, 25, No. 6, 638–646 (2019), https://doi.org/10.1097/MCC.0000000000000661.

    Article  Google Scholar 

  35. C. Culmsee and M. P. Mattson, “p53 in neuronal apoptosis,” Biochem. Biophys. Res. Commun., 331, No. 3, 761–777 (2005), https://doi.org/10.1016/j.bbrc.2005.03.149.

    Article  CAS  PubMed  Google Scholar 

  36. J. N. Pearson-Smith, L.-P. Liang, S. D. Rowley, et al., “Oxidative stress contributes to status epilepticus associated mortality,” Neurochem. Res., 42, No. 7, 2024–2032 (2017), https://doi.org/10.1007/s11064-017-2273-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Fricker, A. M. Tolkovsky, V. Borutaite, et al., “Neuronal cell death,” Physiol. Rev., 98, No. 2, 813–880 (2018), https://doi.org/10.1152/physrev.00011.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Q. Huang, X. Liu, Y. Wu, et al., “P38 MAPK pathway mediates cognitive damage in pentylenetetrazole-induced epilepsy via apoptosis cascade,” Epilepsy Res., 133, 89–92 (2017), https://doi.org/10.1016/j.eplepsyres.2017.04.012.

    Article  CAS  PubMed  Google Scholar 

  39. D. C. Henshall, “Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy,” Biochem. Soc. Trans., 35, No. 2, 421–423 (2007), https://doi.org/10.1042/BST0350421.

    Article  CAS  PubMed  Google Scholar 

  40. Q. Li, Q.-Q. Li, J.-N. Jia, et al., “Sodium valproate ameliorates neuronal apoptosis in a kainic acid model of epilepsy via enhancing PKC-dependent GABAAR γ2 serine 327 phosphorylation,” Neurochem. Res., 43, No. 12, 2343–2352 (2018), https://doi.org/10.1007/s11064-018-2659-8.

    Article  CAS  PubMed  Google Scholar 

  41. T. A. Sazhina, D. A. Sitovskaya, Yu. M. Zabrodskaya, and E. D. Bazhanova, “Functional imbalance of glutamate- and GABAergic neuronal systems in the pathogenesis of focal drug-resistant epilepsy in humans,” Bull. Exp. Biol. Med., 168, 529–532 (2020), https://doi.org/10.1007/s10517-020-04747-3.

    Article  CAS  PubMed  Google Scholar 

  42. J. Bengzon, P. Mohapel, C. T. Ekdahl, and O. Lindvall, “Neuronal apoptosis after brief and prolonged seizures,” Prog. Brain Res., 135, 111–119 (2002), https://doi.org/10.1016/S0079-6123(02)35011-8.

    Article  CAS  PubMed  Google Scholar 

  43. W. Wang, Y.-M. Ma, Z.-L. Jiang, et al., “Apoptosis-antagonizing transcription factor is involved in rat post-traumatic epilepsy pathogenesis,” Exp. Ther. Med., 21, No. 4, 290 (2021), https://doi.org/10.3892/etm.2021.9721.

  44. O. Y. Glushakova, A. O. Glushakov, C. V. Borlongan, et al., “Role of caspase-3-mediated apoptosis in chronic caspase-3-cleaved tau accumulation and blood-brain barrier damage in the corpus callosum after traumatic brain injury in rats,” J. Neurotrauma, 35, No. 1, 157–173 (2018), https://doi.org/10.1089/neu.2017.4999.

    Article  PubMed  Google Scholar 

  45. X.-Y. Mao, H.-H. Zhou, and W.-L. Jin, “Redox-related neuronal death and crosstalk as drug targets: Focus on epilepsy,” Front. Neurosci., 13, 512 (2019), https://doi.org/10.3389/fnins.2019.00512.

    Article  PubMed  PubMed Central  Google Scholar 

  46. H. Zhao, C. Zhu, and D. Huang, “Microglial activation: an important process in the onset of epilepsy,” Am. J. Transl. Res., 10, No. 9, 2877–2889. PMID: 30323874 (2018).

  47. R. T. Lin, R. R. Cai, P. F. Zhang, and Y. X. Lin, “Apoptosis and expression of caspase 3 and caspase 4 in neurocytes of refractory human temporal lobe epilepsy,” Zhonghua Yi Xue Za Zhi, 96, No. 7, 522–525 (2016), https://doi.org/10.3760/cma.j.issn.0376-2491.2016.07.006.

    Article  CAS  PubMed  Google Scholar 

  48. J. Jiang, J. Feng, L. Wu, et al., “Triptolide inhibits neuronal apoptosis in a rat model of pentylenetetrazol-induced-epilepsy via upregulation of miR-187 expression,” Curr. Top. Nutraceut. Res., 18, No. 3, 284–291, (2020), https://doi.org/10.37290/ctnr2641-452X.18.

    Article  Google Scholar 

  49. Z.-Q. Sun, F.-H. Meng, L.-X. Tu, and L. A. Sun, “Myricetin attenuates the severity of seizures and neuroapoptosis in pentylenetetrazole kindled mice by regulating the of BDNF-TrkB signaling pathway and modulating matrix metalloproteinase-9 and GABA,” Exp. Ther. Med., 17, No. 4, 3083–3091 (2019), https://doi.org/10.3892/etm.2019.7282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J.-T. Liu, S.-X. Wu, H. Zhang, and F. Kuang, “Inhibition of MyD88 signaling skews microglia/macrophage polarization and attenuates neuronal apoptosis in the hippocampus after status epilepticus in mice,” Neurotherapeutics, 15, No. 4, 1093–1111 (2018), https://doi.org/10.1007/s13311-018-0653-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. T. Hiragi, Y. Ikegaya, and R. Koyama, “Microglia after seizures and in epilepsy,” Cell, 7, No. 4, 26 (2018), https://doi.org/10.3390/cells7040026.

  52. G. M. Attia, R. A. Elmansy, and W. M. Elsaed, “Neuroprotective effect of nilotinib on pentylenetetrazol-induced epilepsy in adult rat hippocampus: involvement of oxidative stress, autophagy, inflammation, and apoptosis,” Folia Neuropathol., 57, No. 2, 146–160 (2019), https://doi.org/10.5114/fn.2019.84423.

    Article  PubMed  Google Scholar 

  53. M. A. El-Hodhod, H. Y. Tomoum, M. M. Abd Al-Aziz, and S. M. Samaan, “Serum Fas and Bcl-2 in patients with epilepsy,” Acta Neurol. Scand., 113, No. 5, 315–321 (2006), https://doi.org/10.1111/j.1600-0404.2006.00592.x.

    Article  CAS  PubMed  Google Scholar 

  54. J. Feng, L. Feng, and G. Zhang, “Mitochondrial damage in hippocampal neurons of rats with epileptic protein expression of Fas and caspase-3,” Exp. Ther. Med., 16, No. 3, 2483–2489 (2018), https://doi.org/10.3892/etm.2018.6439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. Rubio, C. Mendoza, C. Trejo, et al., “Activation of the extrinsic and intrinsic apoptotic pathways in cerebellum of kindled rats,” Cerebellum, 18, No. 4, 750–760 (2019), https://doi.org/10.1007/s12311-019-01030-8.

    Article  PubMed  Google Scholar 

  56. Q. Li, Y. Han, J. Du, et al., “Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: Changes in LC3, P62, Beclin-1 and Bcl-2 levels,” Neurosci. Res., 130, 47–55 (2018), https://doi.org/10.1016/j.neures.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  57. A. Skardoutsou, P. Primikiris, C. Tsentidis, et al., “Bcl-2 and Caspase-9 serum levels in children and adolescents with idiopathic epilepsy and active seizures,” Minerva Pediatr. (Torino), 23, No. 2, 34–39 (2017), https://doi.org/10.23736/S0026-4946.17.04787-9.

    Article  Google Scholar 

  58. E. C. B. Toscano, E. L. M. Vieira, A. C. D. C. Portela, et al., “Bcl-2/Bax ratio increase does not prevent apoptosis of glia and granular neurons in patients with temporal lobe epilepsy,” Neuropathology, 39, No. 5, 348–357 (2019), https://doi.org/10.1111/neup.12592.

    Article  CAS  PubMed  Google Scholar 

  59. L. Wang, Y. Wang, C. Duan, and Q. Yang, “Inositol phosphatase INPP4A inhibits the apoptosis of in vitro neurons with characteristic of intractable epilepsy by reducing intracellular Ca2+ concentration,” Int. J. Clin. Exp. Pathol., 11, No. 4 (1999–2007), PMID: 31938306 (2018).

  60. M. Mendez-Armenta, C. Nava-Ruiz, D. Juarez-Rebollar, et al., “Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy,” Oxid. Med. Cell. Longev., 2014, 293689 (2014), https://doi.org/10.1155/2014/293689.

  61. S. Jung, Y. E. Ballheimer, F. Brackmann, et al., “Seizure-induced neuronal apoptosis is related to dysregulation of the RNA-edited GluR2 subunit in the developing mouse brain,” Brain Res., 1735, 146760 (2020), https://doi.org/10.1016/j.brainres.2020.146760.

  62. E. C. B. Toscano, E. L. M. Vieira, A. C. D. C. Portela, et al., “Bcl-2/Bax ratio increase does not prevent apoptosis of glia and granular neurons in patients with temporal lobe epilepsy,” Neuropathology, 39, No. 5, 348–357 (2019), https://doi.org/10.1111/neup.12592.

    Article  CAS  PubMed  Google Scholar 

  63. Y. Zhao, W.-J. Jiang, L. Ma, et al., “Voltage-dependent anion channels mediated apoptosis in refractory epilepsy,” Open Med. (Wars.), 15, No. 1, 745–753 (2020), https://doi.org/10.1515/med-2020-0113.

    Article  CAS  PubMed  Google Scholar 

  64. W. Jiang, B. Du, Z. Chi, et al., “Preliminary explorations of the role of mitochondrial proteins in refractory epilepsy: some findings from comparative proteomics,” J. Neurosci. Res., 85, No. 14, 3160–3170 (2007), https://doi.org/10.1002/jnr.21384.

    Article  CAS  PubMed  Google Scholar 

  65. A. Kegler, A. L. F. Caprara, E. T. Pascotini, et al., “Apoptotic markers are increased in epilepsy patients: a relation with manganese superoxide dismutase Ala16Val polymorphism and seizure type through IL-1β and IL-6 pathways,” Biomed. Res. Int., 2020, 6250429 (2020), https://doi.org/10.1155/2020/6250429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. B. Leal, J. Chaves, C. Carvalho, et al., “Brain expression of inflammatory mediators in mesial temporal lobe epilepsy patients,” J. Neuroimmunol., 313, 82–88 (2017), https://doi.org/10.1016/j.jneuroim.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  67. A. Vega-Garcia, S. Orozco-Suarez, A. Villa, et al., “Cortical expression of IL1-β, Bcl-2, caspase-3 and 9, SEMA-3a, NT-3 and P-glycoprotein as biological markers of intrinsic severity in drug-resistant temporal lobe epilepsy,” Brain Res., 1758, 147303 (2021), https://doi.org/10.1016/j.brainres.2021.147303.

  68. M. R. H. Dutra, R. S. Feliciano, K. R. Jacinto, et al., “Protective role of UCP2 in oxidative stress and apoptosis during the silent phase of an experimental model of epilepsy induced by pilocarpine,” Oxid. Med. Cell. Longev., 6736721 (2018), https://doi.org/10.1155/2018/6736721.

  69. A. Arulsamy and M. F. Shaikh, “Tumor necrosis factor-α, the pathological key to post-traumatic epilepsy: A comprehensive systematic review,” ACS Chem. Neurosci., 11, 13:1900–1908 (2020), https://doi.org/10.1021/acschemneuro.0c00301.

    Article  CAS  PubMed  Google Scholar 

  70. R. Sharma, W. L. Leung, A. Zamani, et al., “Neuroinflammation in post-traumatic epilepsy: pathophysiology and tractable therapeutic targets,” Brain Sci., 9, No. 11, 318 (2019), https://doi.org/10.3390/brainsci9110318.

  71. D. Wu, Z. Zheng, S. Fan, et al., “Ameliorating effect of quercetin on epilepsy by inhibition of inflammation in glial cells,” Exp. Ther. Med., 20, No. 2, 854–859 (2020), https://doi.org/10.3892/etm.2020.8742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. D. C. Patel, G. Wallis, E. J. Dahle, et al., “Hippocampal TNFα signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy,” eNeuro, 9, No. 4(2) (2017), https://doi.org/10.1523/ENEURO.0105-17.2017.

  73. R. Burla, M. La Torre, G. Zanetti, et al., “p53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic mice,” Front. Genet., 9, 581 (2018), https://doi.org/10.3389/fgene.2018.00581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. D. Liu, S. Li, L. Gong, et al., “Suppression of microRNA-141 suppressed p53 to protect against neural apoptosis in epilepsy by SIRT1 expression,” J. Cell. Biocehm., 120, No. 6, 9409–9420 (2019), https://doi.org/10.1002/jcb.28216.

    Article  CAS  Google Scholar 

  75. D.-C. Liu, D. E. Eagleman, and N.-P. Tsai, “Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation,” PLoS Genetics, 15, No. 9, e1008364 (2019), https://doi.org/10.1371/journal.pgen.1008364.

  76. A.-H. Liu, M. Chu, and Y.-P. Wang, “Up-regulation of Trem2 inhibits hippocampal neuronal apoptosis and alleviates oxidative stress in epilepsy via the PI3K/Akt pathway in mice,” Neurosci. Bull., 35, No. 3, 471–485 (2019), https://doi.org/10.1007/s12264-018-0324-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Q. Wu and X. Yi, “Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy,” J. Mol. Neurosci., 65, No. 2, 234–245 (2018), https://doi.org/10.1007/s12031-018-1093-3.

    Article  CAS  PubMed  Google Scholar 

  78. F. Hu, L. Shao, J. Zhang, et al., “Knockdown of ZFAS1 inhibits hippocampal neurons apoptosis and autophagy by activating the PI3K/AKT Pathway via up-regulating miR-421 in epilepsy,” Neurochem. Res., 45, No. 10, 2433–2441 (2020), https://doi.org/10.1007/s11064-020-03103-1.

    Article  CAS  PubMed  Google Scholar 

  79. S. Bhowmick, V. D’Mello, and P. M. Abdul-Muneer, “Synergistic inhibition of ERK1/2 and JNK, not p38, phosphorylation ameliorates neuronal damages after traumatic brain injury,” Mol. Neurobiol., 56, No. 2, 1124–1136 (2019), https://doi.org/10.1007/s12035-018-1132-7.

    Article  CAS  PubMed  Google Scholar 

  80. E. V. Chernigovskaya, A. A. Korotkov, N. A. Dorofeeva, et al., “Delayed audiogenic seizure development in a genetic rat model is associated with overactivation of ERK1/2 and disturbances in glutamatergic signaling,” Epilepsy Behav., 99, 106494 (2019), https://doi.org/10.1016/j.yebeh.2019.106494.

  81. N. A. Dorofeeva, Y. S. Grigorieva, L. S. Nikitina, et al., “Effects of ERK1/2 kinases inactivation on the nigrostriatal system of Krushinsky–Molodkina rats genetically prone to audiogenic seizures,” Neurol. Res., 39, No. 10, 918–925 (2017), https://doi.org/10.1080/01616412.2017.1356156.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Bazhanova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 5, Iss. 1, pp. 43–50, May, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhanova, E.D., Kozlov, A.A. Mechanisms of Apoptosis in Drug-Resistant Epilepsy. Neurosci Behav Physi 52, 1360–1367 (2022). https://doi.org/10.1007/s11055-023-01367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01367-y

Keywords

Navigation