Skip to main content

Advertisement

Log in

Biomarkers for Amyotrophic Lateral Sclerosis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. One current view is that ALS is a multifactorial heterogeneous disease, in which a variety of pathological processes lead to a single end result – the death of motoneurons in the brain and spinal cord. Modern diagnostic criteria and the classification of ALS do not take into account the entire heterogeneity of the disease. Despite the development of molecular neurobiology, neurophysiology, and genetics, as well as significant progress in understanding the pathogenesis of ALS, the disease is diagnosed mainly on the basis of clinical manifestations. Recent years have seen a number of promising drugs fail to prove their efficacy in clinical trials. Some researchers attribute these failures to the variability of ALS, the inclusion of patients in studies who are already at the late stages of disease, the lack of use of biomarkers in patient selection, and pharmacodynamic evaluations of potential drugs. Study and implementation of biomarkers in clinical practice may help solve these problems. The present article discusses biomarkers detected in biological fluids of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bendotti, V. Bonetto, E. Pupillo, et al., “Focus on the heterogeneity of amyotrophic lateral sclerosis,” Amyotroph. Lateral Scler. Frontotemporal Degener., 21, No. 7–8, 485–495 (2020), https://doi.org/10.1080/21678421.2020.1779298.

    Article  CAS  PubMed  Google Scholar 

  2. P. Masrori and P. Van Damme, “Amyotrophic lateral sclerosis: a clinical review,” Eur. J. Neurol., 27, No. 10, 1918–1929 (2020), https://doi.org/10.1111/ene.14393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R. H. Brown and A. Al-Chalabi, “Amyotrophic lateral sclerosis,” N. Engl. J. Med., 377, No. 2, 162–172 (2017), https://doi.org/10.1056/NEJMra1603471.

    Article  CAS  PubMed  Google Scholar 

  4. O. M. Peters, M. Ghasemi, and R. H. Brown, “Emerging mechanisms of molecular pathology in ALS,” J. Clin. Invest., 125, No. 5, 1767–1779 (2015), https://doi.org/10.1172/JCI71601.

    Article  PubMed  PubMed Central  Google Scholar 

  5. M. Ghasemi and R. H. Brown, “Genetics of amyotrophic lateral sclerosis,” Cold Spring Harb. Perspect. Med., 8, No. 5, 45–51 (2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932579.

    Article  Google Scholar 

  6. A. Al-Chalabi, O. Hardiman, M. C. Kiernan, et al., “Amyotrophic lateral sclerosis: moving towards a new classification system,” Lancet Neurol., 15, No. 11, 1182–1194 (2016), https://doi.org/10.1016/S1474-4422(16)30199-5.

    Article  PubMed  Google Scholar 

  7. H. Mitsumoto, B. R. Brooks, and Silani, V., “Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved?” Lancet Neurol., 13, No. 11, 1127–1138 (2014), https://doi.org/10.1016/S1474-4422(14)70129-2.

    Article  PubMed  Google Scholar 

  8. Biomarkers Definitions Working Group, “Biomarkers and surrogate endpoints: preferred definitions and conceptual framework,” Clin. Pharmacol. Ther., 69, No. 3, 89–95 (2001), https://doi.org/10.1067/mcp.2001.113989.

    Article  Google Scholar 

  9. M. K. Lee, J. R. Marszalek, and D. W. Cleveland, “A mutant neurofilament subunit causes massive, selective motor Neuron death: implications for the pathogenesis of human motor Neuron disease,” Neuron, 13, No. 4, 975–988 (1994), https://doi.org/10.1016/0896-6273(94)90263-1.

    Article  CAS  PubMed  Google Scholar 

  10. T. S. Reijn, W. F. Abdo, H. J. Schelhaas, and M. M. Verbeek, “CSF neurofilament protein analysis in the differential diagnosis of ALS,” J. Neurol., 256, No. 4, 615–619 (2009), https://doi.org/10.1007/s00415-009-0131-z.

    Article  CAS  PubMed  Google Scholar 

  11. M. D. Schaepdryver, J. Goossens, S. D. Meyer, et al., “Serum neurofilament heavy chains as early marker of motor neuron degeneration,” Ann. Clin. Transl. Neurol., 6, No. 10, 1971–1979 (2019), https://doi.org/10.1002/acn3.50890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. V. Vladykina, V. D. Nazarov, V. S. Krasnov, et al., “Studies of the diagnostic significance of neurofilament heavy chains in cerebrospinal fluid in amyotrophic lateral sclerosis,” Ann. Klin. Eksperim. Nevrol., 15, No. 1, 43–50 (2021), https://doi.org/10.25692/ACEN.2021.1.5.

  13. L. T. Vu and R. Bowser, “Fluid-based biomarkers for amyotrophic lateral sclerosis,” Neurotherapeutics, 14, No. 1, 119–134 (2017), https://doi.org/10.1007/s13311-016-0503-x.

    Article  CAS  PubMed  Google Scholar 

  14. J. Ganesalingam, J. An, R. Bowser, P. M. Andersen, and C. E. Shaw, “pNfH is a promising biomarker for ALS,” Amyotroph. Lateral Scler. Frontotemporal Degener., 14, No. 2, 146–149 (2013), https://doi.org/10.3109/21678421.2012.729596.

    Article  CAS  PubMed  Google Scholar 

  15. K. B. Boylan, J. D. Glass, J. E. Crook, et al., “Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis,” J. Neurol. Neurosurg. Psychiatry, 84, No. 4, 467–472 (2013), https://doi.org/10.1136/jnnp-2012-303768.

    Article  PubMed  Google Scholar 

  16. K. Chen and N. Rajewsky, “The evolution of gene regulation by transcription factors and microRNAs,” Nat. Rev. Genet., 8, No. 2, 93–103 (2007), https://doi.org/10.1038/nrg1990.

    Article  CAS  PubMed  Google Scholar 

  17. A. Emde, C. Eitan, L. Liou, et al., “Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS,” EMBO J., 34, No. 21, 2633–2651 (2015), https://doi.org/10.15252/embj.201490493.

  18. G. Ma, Y. Wang, Y. Li, et al., “MiR-206, a key modulator of skeletal muscle development and disease,” Int. J. Biol. Sci., 11, No. 3, 345–352 (2015), https://doi.org/10.7150/ijbs.10921.

    Article  PubMed  PubMed Central  Google Scholar 

  19. G. Dobrowolny, J. Martone, E. Lepore, et al., “A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients,” Cell Death Discov., 7, 4 (2021), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. M. Pegtel and S. J. Gould, “Exosomes,” Annu. Rev. Biochem., 88, 487–514 (2019), https://doi.org/10.1146/annurev-biochem-013118-111902.

    Article  CAS  PubMed  Google Scholar 

  21. S. A. Banack, R. A. Dunlop, and P. A. Cox, “An miRNA fingerprint using neural-enriched extracellular vesicles from blood plasma: towards a biomarker for amyotrophic lateral sclerosis/motor neuron disease,” Open Biol., 10, No. 6, 24–29 (2020), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333885.

    Article  Google Scholar 

  22. C. Ricci, C. Marzocchi, and S. Battistini, “MicroRNAs as Biomarkers in amyotrophic lateral sclerosis,” Cells, 7, No. 11, 219 (2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262636.

  23. P. L. McGeer and E. G. McGeer, “Inflammatory processes in amyotrophic lateral sclerosis,” Muscle Nerve, 26, No. 4, 459–470 (2002), https://doi.org/10.1002/mus.10191.

    Article  CAS  PubMed  Google Scholar 

  24. R. M. Mitchell, W. M. Freeman, W. T. Randazzo, et al., “A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis,” Neurology, 72, No. 1, 14–19 (2009), https://doi.org/10.1212/01.wnl.0000333251.36681.a5.

    Article  CAS  PubMed  Google Scholar 

  25. M. N. Olesen, A. Wuolikainen, A. C. Nilsson, et al., “Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis,” Neurol Neuroimmunol Neuroinflamm, 7, No. 3, e697 (2020), https://doi.org/10.1212/NXI.0000000000000697.

  26. Q. Yan and E. M. Johnson, “An immunohistochemical study of the nerve growth factor receptor in developing rats,” J Neurosci, 8, No. 9, 3481–3498 (1988), https://doi.org/10.1523/JNEUROSCI.08-09-03481.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. L. Seeburger, S. Tarras, H. Natter, and J. E. Springer, “Spinal cord motoneurons express p75NGFR and p145trkB mRNA in amyotrophic lateral sclerosis,” Brain Res., 621, No. 1, 111–115 (1993), https://doi.org/10.1016/0006-8993(93)90304-6.

    Article  CAS  PubMed  Google Scholar 

  28. S. R. Shepheard, T. Chataway, D. W. Schultz, et al., “The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis,” PLoS One, 9, No. 1, e87398 (2014), https://doi.org/10.1371/journal.pone.0087398.

  29. M. DeJesus-Hernandez, I. R. Mackenzie, B. F. Boeve, et al., “Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis,” Neuron, 72, No. 2, 245–256 (2011), https://doi.org/10.1016/j.neuron.2011.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Balendra and A. M. Isaacs, “C9orf72-mediated ALS and FTD: multiple pathways to disease,” Nat. Rev. Neurol., 14, No. 9, 544–558 (2018), https://doi.org/10.1038/s41582-018-0047-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. E. Ash, K. F. Bieniek, T. F. Gendron, et al., “Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS,” Neuron, 77, 639–646 (2013), https://doi.org/10.1016/j.neuron.2013.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Z. Su, Y. Zhang, T. F. Gendron, et al., “Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS,” Neuron, 83, No. 5, 1043–1050 (2014), https://doi.org/10.1016/j.neuron.2014.07.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. T. Arai, M. Hasegawa, H. Akiyama, et al., “TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis,” Biochem. Biophys. Res. Commun., 351, No. 3, 602–611 (2006), https://doi.org/10.1016/j.bbrc.2006.10.093.

    Article  CAS  PubMed  Google Scholar 

  34. J. Goossens, E. Vanmechelen, J. Q. Trojanowski, et al., “TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies,” Acta Neuropathol. Commun., 3, 23–29 (2015), https://doi.org/10.1186/s40478-015-0195-1.

    Article  CAS  Google Scholar 

  35. R. K. Bunton-Stasyshyn, R. A. Saccon, P. Fratta, and E. M. Fisher, “SOD1 function and its implications for amyotrophic lateral sclerosis pathology: New and renascent themes,” Neuroscientist, 21, 519–529 (2015), https://doi.org/10.1177/1073858414561795.

    Article  CAS  PubMed  Google Scholar 

  36. D. R. Rosen, T. Siddique, D. Patterson, et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, 362, No. 6415, 59–62 (1993), https://doi.org/10.1038/362059a0.

    Article  CAS  PubMed  Google Scholar 

  37. K. Frutiger, T. J. Lukas, G. Gorrie, et al., “Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis,” Amyotroph. Lateral Scler., 9, No. 3, 184–187 (2008), https://doi.org/10.1080/17482960801984358.

    Article  CAS  PubMed  Google Scholar 

  38. L. Winer, D. Srinivasan, S. Chun, et al., “Cerebrospinal fluid defines SOD1 as a pharmacodynamic marker for antisense oligonucleotide therapy,” JAMA Neurol., 70, No. 2, 201–207 (2013), https://doi.org/10.1001/jamaneurol.2013.593.

    Article  PubMed  Google Scholar 

  39. A. Nagai, M. Terashima, A. M. Sheikh, et al., “Involvement of cystatin C in pathophysiology of CNS diseases,” Front. Biosci., 13, 3470–3479 (2008), https://doi.org/10.2741/2941.

    Article  CAS  PubMed  Google Scholar 

  40. K. Okamoto, S. Hirai, M. Amari, et al., “Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum,” Neurosci. Lett., 162, No. 1–2, 125–128 (1993), https://doi.org/10.1016/0304-3940(93)90576-7.

    Article  CAS  PubMed  Google Scholar 

  41. H. Ryberg, J. An, S. Darko, et al., “Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics,” Muscle Nerve, 42, No. 1, 104–111 (2010), https://doi.org/10.1002/mus.21683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. E. Wilson, I. Boumaza, D. Lacomis, and R. Bowser, “Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis,” PLoS One, 5, No. 12, e15133 (2010), https://doi.org/10.1371/journal.pone.0015133.

  43. B. W. Festoff and H. L. Fernandez, “Plasma and red blood cell acetylcholinesterase in amyotrophic lateral sclerosis,” Muscle Nerve, 4, No. 1, 41–47 (1981), https://doi.org/10.1002/mus.880040108.

    Article  CAS  PubMed  Google Scholar 

  44. C. G. Rasool, D. Chad, W. G. Bradley, et al., “Acetylcholinesterase and ATPases in motor neuron degenerative diseases,” Muscle Nerve, 6, No. 6, 430–435 (1983), https://doi.org/10.1002/mus.880060606.

    Article  CAS  PubMed  Google Scholar 

  45. I. Niebroj-Dobosz and I. Hausmanowa-Petrusewicz, “Serum cholinesterase activity in infantile and juvenile spinal muscular atrophy,” Acta Neurol. Scand., 80, No. 3, 208–214 (1989), https://doi.org/10.1111/j.1600-0404.1989.tb03864.x.

    Article  CAS  PubMed  Google Scholar 

  46. R. Sayer, E. Law, P. J. Connelly, and K. C. Breen, “Association of a salivary acetylcholinesterase with Alzheimer’s disease and response to cholinesterase inhibitors,” Clin. Biochem., 37, No. 2, 98–104 (2004), https://doi.org/10.1016/j.clinbiochem.2003.10.007.

    Article  CAS  PubMed  Google Scholar 

  47. T. Fedorova, C. S. Knudsen, K. Mouridsen, et al., “Salivary acetylcholinesterase activity is increased in Parkinson’s Disease: A poten tial marker of parasympathetic dysfunction,” Park. Dis., 2015, 1–7 (2015), https://doi.org/10.1155/2015/156479.

    Article  Google Scholar 

  48. Yu. N. Rushkevich, I. D. Pashkovskaya, and S. A. Likhachev, “Neurospecific proteins in the cerebrospinal fluid and serum of patients with amyotrophic lateral sclerosis,” Zh. Nevrol. Psikhiatr., 118, No. 5, 75–80 (2018), https://doi.org/10.17116/jnevro20181185175.

  49. M. A. Isgrò, P. Bottoni, and R. R. Scatena, “Neuron-specific enolase as a biomarker: biochemical and clinical aspects,” in: Advances in Cancer Biomarkers, Vol 867, Advances in Experimental Medicine and Biology. R. Scatena (ed.), Springer, Netherlands (2015), pp. 125–143, https://doi.org/10.1007/978-94-017-7215-0_9.

    Chapter  Google Scholar 

  50. R. Khosla, M. Rain, S. Sharma, and A. Anand, “Amyotrophic lateral sclerosis (ALS) prediction model derived from plasma and CSF biomarkers,” PLoS One, 16, No. 2, e0247025 (2021), https://doi.org/10.1371/journal.pone.0247025.

  51. S. Ono, N. Shimizu, T. Imai, and G. P. Rodriguez, “Urinary collagen metabolite excretion in amyotrophic lateral sclerosis,” Muscle Nerve, 24, No. 6, 821–825 (2001), https://doi.org/10.1002/mus.1075.

    Article  CAS  PubMed  Google Scholar 

  52. S. Ono, T. Imai, S. Matsubara, et al., “Decreased urinary concentrations of type IV collagen in amyotrophic lateral sclerosis,” Acta Neurol. Scand., 100, No. 2, 111–116 (1999), https://doi.org/10.1111/j.1600-0404.1999.tb01048.x.

    Article  CAS  PubMed  Google Scholar 

  53. H. Mitsumoto, R. M. Santella, X. Liu, et al., “Oxidative stress biomarkers in sporadic ALS,” Amyotroph. Lateral Scler., 9, No. 3, 177–183 (2008), https://doi.org/10.1080/17482960801933942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Khabibrakhmanov.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 5, Iss. 1, pp. 30–35, May, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabibrakhmanov, A.N., Mukhamedyarov, M.A. & Bogdanov, E.I. Biomarkers for Amyotrophic Lateral Sclerosis. Neurosci Behav Physi 52, 1348–1353 (2022). https://doi.org/10.1007/s11055-023-01365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01365-0

Keywords

Navigation