Skip to main content
Log in

Microstructure of Neuronal Connections between the Visual Areas of the Cortex at Different Hierarchical Levels

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The direct neuronal connections of the cortical visual areas at the lower level of the hierarchy with the areas of subsequent levels were studied by microiontophoretic administration of horseradish peroxidase into individual vertical columns in areas 19 and 21a and the distribution of retrograde labeled neurons in areas 17 and 18 was analyzed in cats. Columns in areas 19 and 21a, as compared with the eye-dominant columns of area 18, receive additional cortical inputs from the ipsilateral transition zone 17/18, which indicates a more complex structure of neuronal connections. The locations of input neurons from the transition zones 17/18 of different hemispheres were found to be mirror symmetrical, such that neurons in areas 19 and 21a columns can be tuned to loci located in the central sagittal plane of three-dimensional space. Inputs from areas 17 and 18 of the ipsilateral hemisphere, located outside the transition zone 17/18, were also identified, and these, in combination with inputs from both transition zones, can enable neurons in areas 19 and 21a columns to encode more complex stereo-features of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseenko, S. V. and Shkorbatova, P. Yu., “Microstructure of intrahemispheric bottom-up pathways in the extrastriate areas of the cat cortex,” Integr. Fiziol., 2, No. 2, 205–214 (2021).

    Google Scholar 

  • Alekseenko, S. V., Toporova, S. N., and Makarov, F. N., “Neuronal connections uniting the visual hemifields,” Sens. Sistemy, 16, No. 2, 83–88 (2002).

    Google Scholar 

  • Alekseenko, S. V., Toporova, S. N., and Makarov, F. N., “Neuronal connections of the cortex and reconstruction of the visual space,” Neurosci. Behav. Physiol., 35, No. 4, 435–442 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Bakin, J. S., Nakayama, K., and Gilbert, C. D., “Visual responses in monkey areas V1 and V2 to three-dimensional surface confi gurations,” J. Neurosci., 20, No. 21, 8188–8198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow, H. B., Blakemore, C., and Pettigrew, J. D., “The neural mechanisms of binocular depth discrimination,” J. Physiol., 193, No. 2, 327–342 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman, N., Payne, B. R., Labar, D. R., and Murphy, E. H., “Functional organization of neurons in cat striate cortex: variations in ocular dominance and receptive-field type with cortical laminae and location in visual field,” J. Neurophysiol., 48, 1362–1377 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Cumming, B. G. and Parker, A. J., “Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity,” J. Neurosci., 19, 5602–5618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreher, B., “Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanisms of information processing,” in: Visual Neuroscience, Pettigrew, J. D. et al. (eds.), Cambridge University Press, London (1985), pp. 290–314.

    Google Scholar 

  • Duysens, J., Orban, G. A., van der Glas, H. W., and de Zegher, F. E., “Functional properties of area 19 as compared to area 17 of the cat,” Brain Res., 231, 279–291 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Felleman, D. J. and Van Essen, D. C., “Distributed hierarchical processing in the primate Cerebral Cortex,” Cereb. Cortex, 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Guillemot, J.-P., Paradis, M.-C., Samson, A., et al., “Binocular interaction and disparity coding in area 19 of visual cortex in normal and split-chiasm cats,” Exp. Brain Res., 94, 405–417 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Harutiunian-Kozak, B. A., Grigorian, G. G., Kozak, J. A., et al., “Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex,” Arch. Ital. Biol., 146, No. 2, 119–130 (2008).

    CAS  PubMed  Google Scholar 

  • Houzel, J. C., Milleret, C., and Innocenti, G., “Morphology of callosal axons interconnecting areas 17 and 18 of the cat,” Eur. J. Neurosci., 6, No. 6, 898–917 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., Brain and Visual Perception, Oxford University Press, New York, Oxford (2005).

    Google Scholar 

  • Innocenti, G. M., “Network causality, axonal computations, and Poffenberger,” Exp. Brain Res., 235, 2349–2357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanov, R. S., Bondar’, I. V., Saltykov, K. A., and Shevelev, I. A., “The area of activation zones in field 17 of the cat brain on presentation of grids with different orientations,” Zh. Vyssh. Nerv. Deyat., 56, No. 4, 516–522 (2006).

  • Khayat, P. S., Saint-Amour, D., Molotchnikoff, S., et al., “Cellular response to texture and form defined by motion in area 19 of the cat,” Eur. J. Neurosci., 5, 1727–1738 (2000).

    Article  Google Scholar 

  • Kim, T., Bair, W., and Pasupathy, A., “Neural coding for shape and texture in macaque area V4,” J. Neurosci., 39, No. 24, 4760–4774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Zhang, C., Hou, C., et al., “Stereoscopic processing of crossed and uncrossed disparities in the human visual cortex,” BMC Neurosci., 18, No. 1, 80 (2017), https://doi.org/10.1186/s12868-017-0395-7.

  • Li, Z. and Shigemasu, H., “Generalized representation of stereoscopic surface shape and orientation in the human visual cortex,” Front. Hum. Neurosci., 13, 283; eCollection 2019 (2019), https://doi.org/10.3389/fnhum.2019.00283.

  • Lu, Y., Yin, J., Chen, Z., et al., “Revealing detail along the visual hierarchy: neural clustering preserves acuity from V1 to V4,” Neuron, 98, No. 2, 417–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Olavarría, J. F., “Callosal connections correlate preferentially with ipsilateral cortical domains in cat areas 17 and 18, and with contralateral domains in the 17/18 transition zone,” J. Comp. Neurol., 433, 441–457 (2001).

    Article  PubMed  Google Scholar 

  • Parker, A. J., “Intermediate level cortical areas and the multiple roles of area V4,” Curr. Opin. Physiol., 16, 61–66 (2020).

    Article  Google Scholar 

  • Parker, A. J., Smith, J. E. T., and Krug, K., “Neural architectures for stereo vision,” Phil. Trans. R. Soc. B., 371, 20150261 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasupathy, A., Popovkina, D. V., and Kim, T., “Visual functions of primate area V4,” Annu. Rev. Vis. Sci., (2020), https://doi.org/10.1146/annurevvision-030320-041306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Payne, B. R., “Representation of the ipsilateral visual fi eld in the transition zone between areas 17 and 18 of the cat’s cerebral cortex,” Vis. Neurosci., 4, No. 5, 445–474 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Pettine, W. W., Steinmetz, N. A., and Moore, T., “Laminar segregation of sensory coding and behavioral readout in macaque V4,” Proc. Natl. Acad. Sci. USA, 116, 14,749–14,754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandra, V., Pawlak, V., Wallace, D. J., and Kerr, J. N. D., “Impact of visual callosal pathway is dependent upon ipsilateral thalamus,” Nat. Commun., 11, No. 1, 1889 (2020), https://doi.org/10.1038/s41467-020-15672-4.

  • Rochefort, N. L., Buzas, P., Kisvarday, Z. F., et al., “Layout of transcallosal activity in cat visual cortex revealed by optical imaging,” NeuroImage, 36, 804–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Rockland, K. S., “Axon collaterals and brain states,” Front. Syst. Neurosci., 12, 32, eCollection 2018 (2018), https://doi.org/10.3389/fnsys.2018.00032.

  • Salin, P. A., Girard, P., Kennedy, H., and Bullier, J., “Visuotopic organization of corticocortical connections in the visual system of the cat,” J. Comp. Neurol., 320, No. 4, 415–434 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Scannell, J. W., Blakemore, C., and Young, M. P., “Analysis of connectivity in the cat cerebral cortex,” J. Neurosci., 15, No. 2, 1463–1483 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, O. M., Cumming, B. G., and Parker, A. J., “A specialization for relative disparity in V2,” Nature Neurosci., 5, 472–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Toporova, S. N., Alekseenko, S. V., and Makarov, F. N., “The spatial distribution of horizontal connections in area 18 of the cortex in cats,” Neurosci. Behav. Physiol., 31, No. 4, 345–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Tusa, R. J., Palmer, L. A., and Rosenquist, A. C., “Multiple cortical visual areas: Visual fi eld topography in the cat,” in: Cortical Sensory Organization, Humana Press, New York (1981), Vol. 2, pp. 1–31.

    Google Scholar 

  • Villeneuve, M. Y., Vanni, M. P., and Casanova, C., “Modular organization in area 21a of the cat revealed by optical imaging: comparison with the primary visual cortex,” Neuroscience, 164, No. 3, 1320–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Wimborne, B. M. and Henry, G. H., “Response characteristics of the cells in the cortical area 21a of the cat with special reference to orientation specificity,” J. Physiol., 449, 457–478 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderle, T., Eriksson, D., Peiker, C., and Schmid, K. E., “Input and output gain modulation by the lateral interhemispheric network in early visual cortex,” J. Neurosci., 35, No. 20, 7682–7694 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Alekseenko.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 2, pp. 250–258, March–April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, S.V., Shkorbatova, P.Y. Microstructure of Neuronal Connections between the Visual Areas of the Cortex at Different Hierarchical Levels. Neurosci Behav Physi 52, 1270–1276 (2022). https://doi.org/10.1007/s11055-023-01356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01356-1

Keywords

Navigation