Skip to main content
Log in

Integrative Functions of the Cortico-Strio-Thalamo-Cortical System of the Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article discusses the neurophysiological mechanisms underlying the spatiotemporal integration of different brain structures and the physiological systems of the body on performance of different types of motivated goal-oriented behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Albertin, “Involvement of the DA-reactive system of the caudate nucleus in regulating operating conditioned reflexes of different complexity,” Ros. Fiziol. Zh., 71, No. 1, 87–94 (1985).

    Google Scholar 

  2. S. V. Albertin, “Involvement of the caudate nucleus in forming spatial choice reactions in a radial maze in rats,” Ros. Fiziol. Zh., 88, No. 5, 545–552 (2002).

    Google Scholar 

  3. S. V. Albertin, Modeling Studies of the Central Nervous System, Politekhnika-Servis, St. Petersburg (2011).

    Google Scholar 

  4. S. V. Albertin and S. I. Viner, “Neuron activity in the nucleus accumbens and hippocampus of rats on formation of search behavior in a radial maze,” Byull. Eksperim. Biol. Med., 158, No. 10, 400–406 (2014).

    Google Scholar 

  5. S. V. Albertin, “Effects of stimulating the DA-ergic system of the brain on food preference in rats,” Ros. Fiziol. Zh., 102, No. 10, 1137–1145 (2016).

    Google Scholar 

  6. S. V. Albertin, “Effects of a conditioned reflex retraining regime in rats on search behavior in a radial maze,” Ros. Fiziol. Zh., 102, No. 11, 1302–13011 (2016).

    Google Scholar 

  7. S. V. Albertin, “Effects of fragmentation of visual navigation signals on the orientation of rats in a radial maze,” Fiziol. Zh., 103, No. 8, 854–865 (2017).

    Google Scholar 

  8. S. V. Albertin, “A means of testing sensorimotor reactions in animals in conditions of artificial tracking,” Sens. Sistemy, 31, No. 4, 290–296 (2017).

    Google Scholar 

  9. E. B. Arushanyan and V. A. Otellin, The Caudate Nucleus, Nauka, Leningrad (1976).

    Google Scholar 

  10. E. B. Arushanyan, “The contribution of the neostriatum to the rhythmic organization of brain activity,” Usp. Fiziol. Nauk., 23, No. 1, 58–73 (1992).

    Google Scholar 

  11. P. K. Anokhin, “Systems analysis of the integrative activity of neurons,” Usp. Fiziol. Nauk., 5, No. 2, 3 (1974).

  12. A. S. Batuev, “The functional structure of behavioral acts,” in: Methodological Aspects of the Science of the Brain, Moscow (1983), pp. 116–123.

  13. N. Yu. Belenkov, V. A. Sosenkov, V. N. Sapozhnikov, and V. I. Shcherbakov, “A method for reversible cold exclusion of the neocortex in chronic experiments,” Byull. Eksperim. Biol., No. 8, 121–125 (1969).

  14. N. Yu. Belenkov, The Integrity Principle in Brain Activity, Meditsina, Moscow (1980).

    Google Scholar 

  15. M. M. Bogoslovskii and S. V. Albertin, “Electrical activity in layers of isolated cerebral cortex on going to sleep and in different sleep stages,” Ros. Fiziol. Zh., 62, No. 12, 1753–1759 (1976).

    Google Scholar 

  16. M. M. Bogoslovskii, V. G. Krasil’nikov, G. Tseshke, and S. V. Albertin, “Characteristics of the local temperature of isolated cortex on waking and changes in sleep stages,” Ros. Fiziol. Zh., 63, No. 11, 1631–1637 (1977).

    Google Scholar 

  17. M. M. Bogoslovskii, I. G. Karmanova, V. F. Maksimuk, and S. V. Albertin, “Electrographic changes in isolated cat cortex as influenced by sleep neuropeptide,” Zh. Evolyuts. Biokhim. Fiziol., 15, No. 4, 430433 (1979).

  18. S. B. Buklina, “Memory impairment and deep brain structures,” Zh. Nevrol. Psikhiatr., 99, No. 9, 10–15 (1999).

    Google Scholar 

  19. L. S. Vygotskii, The Development of Higher Mental Functions, Moscow (1950).

  20. A. A. Gulyaev and B. F. Santalov, “Holography in the nervous system,” in: The Cellular Mechanisms of Memory, Pushchino-na-Oke (1973).

  21. L. K. Danilova, “The role of the orbital cortex in feeding behavior,” Zh. Vyssh. Nerv. Deyat., 25, No. 3, 520–527 (1975).

    Google Scholar 

  22. L. K. Danilova, “Effects of prolonged electrical stimulation of the head of the caudate nucleus on the feeding secretory reflex in dogs,” Zh. Vyssh. Nerv. Deyat., 29, No. 2, 237–244 (1979).

    Google Scholar 

  23. A. S. Denisova, “Formation of feeding conditioned reflexes in dogs with lesions to the caudate nucleus,” in: The Striopallidal System, Leningrad (1973), pp. 13–22.

  24. O. P. Kuznetsov, “Nonclassical paradigms in artificial intelligence,” Teor. Sistem. Upravl., No. 5, 3 (1995).

  25. P. S. Kupalov, O. D. Voevodina, V. D. Volkova, et al., Situational Reflexes in Dogs in Health and Disease, Meditsina, Leningrad (1964).

  26. Yu. V. Natochin, “Physiology and medicine,” Vestn. Ross. Akad. Med. Nauk., 74, No. 11, 1594–1600 (2004).

    Google Scholar 

  27. I. P. Pavlov, Twenty Years of Experience in the Objective Study of Higher Nervous Activity (Behavior) in Animals, Biomedgiz, Moscow, Leningrad (1938).

  28. I. P. Pavlov, Pavlov Media, Moscow, Leningrad (1949).

  29. V. A. Otellin and E. B. Arushanyan, The Nigro-Strio-Nigral System, Moscow (1989).

  30. A. T. Selivanova and S. N. Golikov, Cholinergic Mechanisms of Higher Nervous Activity, Meditsina, Leningrad, Moscow (1975).

  31. I. G. Silkis, “A possible mechanism for the involvement of the cortex-basal ganglia-thalamus-cortex circuit in the perception of time,” Usp. Fiziol. Nauk., 42, No. 2, 41–56 (2011).

    Google Scholar 

  32. V. A. Sosenkov, Studies of Behavior in Cats in Functional (cold) Exclusion of the Neocortex and Parts Thereof: Thesis of Doctor of Biological Sciences, Gorki (1974).

  33. N. F. Suvorov, The Striatal System and Behavior, Nauka, Leningrad (1980).

    Google Scholar 

  34. N. F. Suvorov, K. B. Shapovalova, and S. V. Albertin, “Involvement of the striatum in the mechanisms of operant behavior,” Zh. Vyssh. Nerv. Deyat., 33, No. 2, 256–266 (1983).

    Google Scholar 

  35. N. F. Suvorov, “Systems organization of corticostriatal interactions,” Usp. Fiziol. Nauk., 25, No. 4, 78 (1994).

  36. B. F. Tolkunov, “Principles of determination of the functions of a neural center (using the neostriatum as an example),” Zh. Evolyuts. Biokhim. Fiziol., 27, No. 5, 598–607 (1991).

    Google Scholar 

  37. V. A. Cherkes, Brain Structures of Neural Networks, Naukova Dumka, Kiev (1988).

  38. G. I. Shul’gina, “Synchronization of EEG rhythms and the holographic theory of memory,” Zh. Vyssh. Nerv. Deyat., 47, No. 5, 878–889 (1997).

    Google Scholar 

  39. V. N. Shustov, EEG Studies of the Role of the Head of the Caudate Nucleus in Dogs in Conditioned Reflex Feeding Activity: Author’s Abstract (1978).

  40. L. F. Agnati, M. Zoli, I. Strömberg, and K. Fuxe, “Intercellular communication in the brain: wiring versus volume Transmission,” Neuroscience, 69, 711–726 (1995).

    Article  Google Scholar 

  41. S. V. Albertin, “Effects of injury of cortico- and rubrospinal pathways on operant food-procuring reflexes,” Neurophysiology, 46, No. 4, 352–360 (2014).

    Article  Google Scholar 

  42. S. V. Albertin, A. B. Mulder, E. Tabuchi, et al., “Lesions of the medial shell of the nucleus accumbens impair rats in finding larger rewards, but spare reward-seeking behavior,” Behav. Brain Res., 117, 173–183 (2000).

    Article  Google Scholar 

  43. S. V. Albertin and S. I. Wiener, “Neuronal activity in the nucleus accumbens and hippocampus in rats during formation of seeking behavior in a radial maze,” Byull. Eksperim. Biol. Med., 158, No. 4, 405–409 (2015).

    Article  Google Scholar 

  44. G. E. Alexander and M. D. Crutcher, “Functional architecture of basal ganglia circuits: neural substrates of parallel processing,” Trends Neurosci., 13, 266–272 (1990).

    Article  Google Scholar 

  45. G. E. Alexander, M. R. DeLong, and P. L. Strick, “Parallel organization of functionally segregated circuits linking basal ganglia and cortex,” Annu. Rev. Neurosci., 9, 357–81 (1986).

    Article  Google Scholar 

  46. G. E. Alexander, “Basal ganglia-thalamocortical circuits: their role in the control of movements,” J. Clin. Neurophysiol., 11, 420–431 (1994).

    Article  Google Scholar 

  47. L. G. Allan, “The perception of time,” Percept. Psychophys., 26, 340–354 (1979).

    Article  Google Scholar 

  48. M. J. Allman and W. H. Meck, “Pathophysiological distortions in time perception and timed performance,” Brain, 135, 656–677 (2012).

    Article  Google Scholar 

  49. M. J. Allman, B. Yin, and W. H. Meck, “Time in the psychopathological mind,” in: Subjective Time: The Philosophy, Psychology, and Neuroscience of Temporality, D. Lloyd and V. Arstila (eds.), MIT Press, Cambridge, MA (2014), pp. 637–654.

  50. G. W. Arbuthnott and J. Wickens, “Space, time and dopamine,” Trends Neurosci., 30, 62–69 (2007).

    Article  Google Scholar 

  51. I. Bar-Gad, Morris G, and H. Bergman, “Information processing, dimensionality reduction and reinforcement learning in the basal ganglia,” Prog. Neurobiol., 71, 439–73 (2003).

    Article  Google Scholar 

  52. J. A. Beeler and D. Mourra, “To do or not to do: dopamine, affordability and the economics of opportunity,” Front. Integr. Neurosci., 12, 6 (2018).

    Article  Google Scholar 

  53. J. A. Beeler and J. K. Dreyer, “Synchronicity: The role of midbrain dopamine in whole-brain coordination,” eNeuro, 6, No. 2, 1–17 (2019).

    Article  Google Scholar 

  54. K. C. Berridge, “The debate over dopamine’s role in reward: the case for incentive salience,” Psychopharmacology (Berlin), 191, 391–431 (2007).

    Article  Google Scholar 

  55. A. Björklund and S. B. Dunnett, “Dopamine neuron systems in the brain,” Trends Neurosci., 30, 194–202 (2007).

    Article  Google Scholar 

  56. J. P. Bolam and E. K. Pissadaki, “Living on the edge with too many mouths to feed: why dopamine neurons die,” Mov. Disord., 27, 1478–483 (2012).

    Article  Google Scholar 

  57. C. V. Buhusi and W. H. Meck, “What makes us tick? Functional and neural mechanisms of interval timing,” Nat. Rev. Neurosci., 6, 755–765 (2005).

    Article  Google Scholar 

  58. R. Calzavara, P. Mailly, and S. N. Haber, “Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action,” Eur. J. Neurosci., 26, 2005–2024 (2007).

    Article  Google Scholar 

  59. E. Castaneda, I. Q. Whishaw, and T. E. Robinson, “Change in striatal dopamine neurotransmission assessed with microdialysis following recovery from a bilateral 6-OHDA lesion: variation as a function of lesion size,” J. Neurosci., 10, 1847–1854 (1990).

    Article  Google Scholar 

  60. D. Centonze, C. Grande, A. Usiello, et al., “Receptors subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons,” J. Neurosci., 23, No. 15, 6245–6254 (2003).

    Article  Google Scholar 

  61. M. X. Cohen, C. E. Elger, and C. Ranganath, “Reward expectation modulates feed-back related negativity and EEG spectra,” NeuroImage, 35, 968–978 (2007).

    Article  Google Scholar 

  62. J. T. Coull, F. Vidal, B. Nazarian, and F. Macar, “Functional anatomy of the attentional modulation of time estimation,” Science, 303, 1506–1508 (2004).

    Article  Google Scholar 

  63. J. T. Coull, R. K. Cheng, and W. H. Meck, “Neuroanatomical and neurochemical substrates of timing,” Neuropsychopharmacology, 36, 3–25 (2011).

    Article  Google Scholar 

  64. H. C. Cromvell and W. Schultz, “Effects of expectations for different reward magnitude on neuronal activity in primate striatum,” J. Neurophysiol., 89, 2823–2838 (2003).

    Article  Google Scholar 

  65. Da Cunha C, E. C. Wietzikoski, M. Dombrowski, et al., “Learning processing in the basal ganglia: A mosaic of broken mirror,” Behav. Brain Res., 199, 157–170 (2009).

    Article  Google Scholar 

  66. M. R. De Long and T. Wichmann, “Basal ganglia-thalamocortical circuits in Parkinsonian signs,” Clin. Neurosci., 1, 18–26 (1993).

    Google Scholar 

  67. M. R. DeLong and T. Wichmann, “Circuits and circuit disorders of the basal ganglia,” Arch. Neurol., 64, 20–24 (2007).

    Article  Google Scholar 

  68. D. Denny-Brown and N. Yanagisawa, “The role of basal ganglia in the initiation of movements,” in: The Basal Ganglia, M. D. Be Yahr (ed.), Raven Press, New York (1976), pp. 113–159.

  69. G. Dragoi and G. Buzsaki, “Temporal encoding of place sequences by hippocampal cell assemblies,” Neuron, 50, 145–157 (2006).

    Article  Google Scholar 

  70. J. K. Dreyer, K. F. Herrik, R. W. Berg, and J. D. Hounsgaard, “Influence of phasic and tonic dopamine release on receptor activation,” J. Neurosci., 30, 14273–14283 (2010).

    Article  Google Scholar 

  71. C. D. Fiorillo, W. T. Newsome, and W. Schultz, “The temporal precision of reward prediction in dopamine neurons,” Nature Neurosci., 11, No. 8, 966–975 (2008).

    Article  Google Scholar 

  72. A. W. Flaherty and A. M. Graybiel, “Corticostriatal transformations in the primate somatosensory system – projections from physiologically mapped body-part representations,” J. Neurophysiol., 66, 1249–63 (1991).

    Article  Google Scholar 

  73. A. W. Flaherty and A. M. Graybiel, “Input–output organization of the sensorimotor striatum in the squirrel-monkey,” J. Neurosci., 14, 599–610 (1994).

    Article  Google Scholar 

  74. S. Fujisawa and K. Buzsaki, “A 4 Hz oscillation adaptively synchronizes prefrontal, VTA and hippocampal activities,” Neuron, 72, 6084–6093 (2011).

    Article  Google Scholar 

  75. P. A. Garris, E. L. Ciolkowski, Pastore P, and R. M. Wightman, “Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain,” J. Neurosci., 14, 6084–6093 (1994).

    Article  Google Scholar 

  76. C. R. Gerfen, T. M. Engber, L. C. Mahan, et al., “D1 and D2 dopamine receptor regulated gene-expression of striatonigral and striatopallidal neurons,” Science, 250, 429–1432 (1990).

    Article  Google Scholar 

  77. C. R. Gerfen, “Indirect-pathway neurons lose their spines in Parkinson disease,” Nat. Neurosci., 9, 157–8 (2006).

    Article  Google Scholar 

  78. F. Gonon, “Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo,” J. Neurosci., 17, 5972–5978 (1997).

    Article  Google Scholar 

  79. A. M. Graybiel and C. W. Ragsdale, Jr., “Histochemically distinct compartments in the striatum of human, monkeys and cat demonstrated by acetylthiocholinesterase staining,” Proc. Natl. Acad. Sci. USA, 75, 5723–5726 (1978).

    Article  Google Scholar 

  80. S. Grondin, “From physical time to the first and second moments of psychological time,” Psychol. Bull., 127, 22–44 (2001).

    Article  Google Scholar 

  81. S. Grondin, “Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions,” Atten. Percept. Psychophys., 72, 561–582 (2010).

    Article  Google Scholar 

  82. A. S. Gupta, V. F. F. van der Meer, D. S. Nouretsky, and A. D. Redish, “Segmentation of spatial experience by hippocampal theta sequences,” Nat. Neurosci., 15, No. 7, 1032–1039 (2012).

    Article  Google Scholar 

  83. D. L. Harrington, G. N. Castillo, C. H. Fong, and J. D. Reed, “Neural underpinnings of distortions in the experience of time across the senses,” Front. Integr. Neurosci., 5, 32 (2011), https://doi.org/10.3389/fnint.2011.00032.

    Article  Google Scholar 

  84. S. C. Hinton and W. H. Meck, “Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range,” Cogn. Brain Res., 21, 171–182 (2004).

    Article  Google Scholar 

  85. M. W. Howe, P. L. Tierney, S. G. Sandberg, et al., “Prolonged dopamine signalling in striatum signals proximity and value of distant rewards,” Nature, 500, 575–579 (2013).

    Article  Google Scholar 

  86. E. Jerhlag, E. Egecioglu, S. L. Dicson, et al., “Ghrelin administration into tegmental area stimulates locomotor activity and increases extracellular concentration of DA in the, n. accumbens,” Addict. Biol., 12, 6–16 (2007).

    Article  Google Scholar 

  87. D. Joel and I. Weiner, “The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum,” Neuroscience, 96, 451–74 (2000).

    Article  Google Scholar 

  88. Y. Kawaguchi and P. C. Emson, “Striatal interneurones: chemical, physiological and morphological characterization,” Trends Neurosci., 18, 527–35 (1995).

    Article  Google Scholar 

  89. A. Kitsikis and A. G. Robergs, “Changes in brain biogenic amines in cats performing a symmetrically reinforced go–no-go visual discrimination task,” Behav. Neurol., Biol., 32, No. 2, 133–147 (1981).

    Article  Google Scholar 

  90. S. Kobayashi and W. Schultz, “Influence of reward delays on responses of dopamine neurons,” J. Neurosci., 28, No. 31, 7837–7846 (2008).

    Article  Google Scholar 

  91. J. Lagowska and E. Fonberg, “Salivary reaction in dogs with dorsomedial amygdala lesions,” Acta Neurobiol. Exp., 35, 17–26 (1975).

    Google Scholar 

  92. J. Lisman and A. D. Redish, “Prediction, sequences and hippocampus,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 364, 1193–1201 (2009).

  93. D. Lloyd and V. Arstila, Subjective Time: The Philosophy, Psychology, and Neuroscience of Temporality, MIT Press, Cambridge, MA (2014).

    Google Scholar 

  94. A. M. Lavoie and S. J. Mizumory, “Spatial movement and reward sensitive discharge by medial ventral striatum neurons in rats,” Brain Res., 638, 157–168 (1994).

    Article  Google Scholar 

  95. C. Lustig, M. S. Matell, and W. H. Meck, “Not ‘just’ a coincidence: frontal-striatal interactions in working Memory and interval timing,” Memory, 13, 441–448 (2005).

    Article  Google Scholar 

  96. F. Macar and F. Vida, “Timing processes: An outline of behavioural and neural indices not systematically considered in timing models,” Can. J. Exp. Psychol., 63, 227–239 (2009).

    Article  Google Scholar 

  97. C. S. Maldonado-Irizarry, C. J. Swanson, and A. N. Kelley, “Glutamate receptors in the nucl. accumbens shell control feeding behavior via the lateral hypothalamus,” J. Neurosci., 15, No. 10, 6779–6788 (1995).

    Article  Google Scholar 

  98. S. Malik, F. McGlone, D. Bedrossian, and A. Dagher, “Ghrelin modulates brain activity in areas that control appetite behavior,” Cell Metab., 7, 400–409 (2008).

    Article  Google Scholar 

  99. M. S. Matell and W. H. Meck, “Neurophysiological mechanisms of interval timing behavior,” Bioessays, 22, 94–103 (2000).

    Article  Google Scholar 

  100. W. Matsuda, T. Furuta, K. C. Nakamura, et al., “Single nigro-striatal DA-ergic neurons from widely spread and highly dense axonal arborizations in the neostriatum,” J. Neurosci., 29, 444–453 (2009).

    Article  Google Scholar 

  101. R. Matsuo and K. Kusano, “Lateral hypothalamic modulation of the gustatory-salivary reflex in rats,” J. Neurosci., 4, 12081216 (1984).

    Article  Google Scholar 

  102. J. G. McHaffie, T. R. Stanford, B. E. Stein, et al., “Subcortical loops through the basal ganglia,” Trends Neurosci., 28, 401–407 (2005).

    Article  Google Scholar 

  103. W. H. Meck, “Neuroanatomical localization and internal clock: A functional link between mesolimbic, nigrostriatal and mesocortical dopaminergic systems,” Brain Res., 1109, 93–107 (2006).

    Article  Google Scholar 

  104. W. H. Meck, R. M. Church, and M. S. Matell, “Hippocampus, time and memory – a retrospective analysis,” Behav. Neuroscience, 127, No. 5, 642–654 (2013).

    Article  Google Scholar 

  105. N. W. Morton, K. R. Sherill, and A. R. Preston, “Memory integration constructs maps of space, time and concepts,” Curre. Opin. Behav. Sci., 17, 161–168 (2017).

    Article  Google Scholar 

  106. J. Moss and J. P. Bolam, “A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals,” J. Neurosci., 28, 11,221–11,230 (2008).

  107. M. J. Nirenberg, J. Chan, A. Pohorille, et al., “The dopamine transporter: comparative ultrastructure of DA-ergic axons in limbic and motor compartments of the, “accumbens,” J. Neurosci., 17, 6899–907 (1997).

  108. H. Nishino, S. Hattory, K. Muramoto, et al., “Basal ganglia neural activity during operant feeding behavior in the monkey: relation to sensory integration and motor execution,” Brain Res. Bull., 27, 463–468 (1992).

    Article  Google Scholar 

  109. S. A. Oprisan and C. V. Buhusi, “Modeling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons,” Front. Integr. Neurosci., 5, 52 (2011).

    Article  Google Scholar 

  110. A. Parent and L. N. Hazrati, “Functional anatomy of the basal ganglia. I. The corticobasal ganglia-thalamo-cortical loop,” Brain Res. Rev., 20, 91–127 (1995).

    Article  Google Scholar 

  111. J. A. Parkinson, M. C. Olmstead, L. H. Burns, et al., “Dissociations in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by amphetamine,” J. Neurosci., 19, 3401–3411 (1999).

    Article  Google Scholar 

  112. J. A. Parkinson, J. W. Dalley, R. L. Cardinal, et al., “Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive approach behavior: implications for mesoaccumbens function,” Behav. Brain Res., 137, 149–163 (2002).

    Article  Google Scholar 

  113. N. R. Richardson and A. Gratton, “Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat,” J. Neurosci., 16, No. 24, 8160–8169 (1996).

    Article  Google Scholar 

  114. A. Pisani, G. Bernardi, J. Ding, and D. J. Surmeier, “Re-emergence of striatal cholinergic interneurons in movement disorders,” Trends Neurosci., 30, No. 10, 545–553 (2007).

    Article  Google Scholar 

  115. T. E. Robinson and I. Q. Whishaw, “Normalization of extracellular DA in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats,” Brain Res., 450, 209–224 (1988).

    Article  Google Scholar 

  116. W. Schultz, P. Apicella, E. Scarnati, and T. Ljungberg, “Neuronal activity in monkey ventral striatum related to the expectation of reward,” J. Neurosci., 12, 4595–4610 (1992).

    Article  Google Scholar 

  117. W. Schultz and R. Romo, “Role of primate basal ganglia and frontal cortex in the internal generation of movements. 1. Preparatory activity n the anterior striatum,” Exp. Brain Res., 91, No. 33, 63–84 (1992).

    Google Scholar 

  118. W. Schultz, “Recent advances in understanding the role of phasic dopamine activity,” F1000Res, 8, F1000 Faculty Review, 1680 (2019), https://doi.org/10.12688/f1000research.19793.1.

  119. L. Y. Shih, W. J. Kuo, T. C. Yeh, et al., “Common neural mechanisms for explicit timing in the sub-second range,” Neuroreport, 20, No. 10, 897–901 (2009).

    Article  Google Scholar 

  120. K. P. Skibicka, C. Hansson, M. Alvarez-Crespo, et al., “Ghrelin directly targets the ventral tegmental area to increase food motivation,” Neuroscience, 180, 129–137 (2011).

    Article  Google Scholar 

  121. K. P. Skibicka et al., “Ghrelin interacts with neuropeptide YY1 and opioid receptors to increase food reward,” Endocrinology, 153, 1194–1206 (2012).

    Article  Google Scholar 

  122. G. P. Smith, “Dopamine and food reward,” Progr. Psychobiol. Psychol., 16, 83–144 (1995).

    Google Scholar 

  123. G. P. Smith, “Signals from the abdomen for satiety and feeding,” in: Abstr. Int. Pavlov Centenary Symposium “Integrative Physiology and Behavior,” St. Petersburg (2004), p. 21.

  124. M. Suaud-Chagny, F. C. Dugast, K. Chergui, et al., “Uptake of dopamine released by impulse flow in the rat mesolimbic and striatal systems in vivo,” J. Neurochem., 65, 2603–2611 (1995).

    Article  Google Scholar 

  125. D. J. Surmeier, W. J. Song, and Z. Yan, “Coordinated expression of dopamine receptors in neostriatal MSNs,” J. Neurosci., 16, 6579–6591 (1996).

    Article  Google Scholar 

  126. N. F. Suvorov, S. V. Albertin, and N. L. Voilokova, “The neostriatum: Neurophysiology and behaviour,” Sov. Sci. Review., F. Physiol. Gen. Biol., 2, 597–677 (1988).

    Google Scholar 

  127. J. M. Tepper and J. P. Bolam, “Functional diversity and specificity of neostriatal interneurons,” Curr. Opin. Neurobiol., 14, 685–92 (2004).

    Article  Google Scholar 

  128. G. Van der Plasse, M. Merkestein, M. C. M. Luijendijk, et al., “Food cues and ghrelin recruit the same neuronal activity,” Int. J. Obes. (Lond.), 37, 1012–1019 (2013).

    Article  Google Scholar 

  129. M. Watabe-Uchida, L. Zhu, S. K. Ogawa, et al., “Whole-brain mapping of direct inputs to midbrain dopamine Neurons,” Neuron, 74, 858–873 (2012).

    Article  Google Scholar 

  130. J. R. Wickens, C. S. Budd, B. I. Hyland, et al., “Striatal contributions to reward and decision making. Making sense of regional variations in a reiterated processing matrix,” Ann. N. Y. Acad. Sci., 1104, 192–212 (2007).

    Article  Google Scholar 

  131. S. I. Wiener, R. Shibata, S. V. Albertin, et al., “Spatial and behavioral correlates in nucleus accumbens neurons in zones receiving hippocampal or prefrontal cortical inputs,” Intern. Congr. Ser., 1250, 275–292 (2003).

    Article  Google Scholar 

  132. M. Wittmann, “The inner sense of time: How the brain creates a representation of duration,” Nat. Rev. Neurosci., 14, 217–223 (2013).

    Article  Google Scholar 

  133. M. Zoli, C. Torri, R. Ferrari, et al., “The emergence of the volume transmission concept,” Brain Res. Rev., 26, 136–147 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Albertin.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 52, No. 4, pp. 54–71, October–December, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertin, S.V. Integrative Functions of the Cortico-Strio-Thalamo-Cortical System of the Brain. Neurosci Behav Physi 52, 1127–1141 (2022). https://doi.org/10.1007/s11055-022-01339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01339-8

Keywords

Navigation