Skip to main content
Log in

One Phenomenon with Many Interpretations: Asymmetry of the Frontal EEG α Rhythm in Healthy People. Part I

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The asymmetry of the frontal α rhythm of the EEG as an index of the comparative activity of the left and right prefrontal cortex is an important biomarker characterizing the state of a person’s emotional and motivational domains. This review outlines the methodological aspects of signal detection and correlation and briefly discusses systemic relationships within the prefrontal cortex and between the prefrontal cortex and the amygdala, hippocampus, cingulate gyrus, and insular cortex. The evolutionary roots of the asymmetry of the prefrontal cortex, its heritability, and its associations with endocrine and immune indicators are considered. The main approaches to interpreting this parameter are formulated and a relationship between research results in this area and psychological theories of the emotions and motivation is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. Simonov, M. N. Rusalova, L. A. Preobrazhenskaya, and G. L. Vanetsian, “The novelty factor and asymmetry in brain activity,” Zh. Vyssh. Nerv. Deyat., 45, No. 1, 13–17 (1995).

    Google Scholar 

  2. E. E. Accortt and J. J. Allen, “Frontal EEG asymmetry and premenstrual dysphoric symptomatology,” J. Abnormal Psychol., 115, No. 1, 179–184 (2006), https://doi.org/10.1037/0021-843X.115.1.179.

    Article  Google Scholar 

  3. D. Adolph, M. von Glischinski, A. Wannemüller, and J. Margraf, “The influence of frontal alpha-asymmetry on the processing of approach-and withdrawal-related stimuli – A multichannel Psychophysiology study,” Psychophysiology, 54, No. 9, 1295–1310 (2017), https://doi.org/10.1111/psyp.12878.

    Article  Google Scholar 

  4. G. L. Ahern and G. E. Schwartz, “Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis,” Neuropsychologia, 23, No. 6, 745–755 (1985), https://doi.org/10.1016/0028-3932(85)90081-8.

    Article  Google Scholar 

  5. J. J. Allen, J. A. Coan, and M. Nazarian, “Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion,” Biol. Psychol., 67, No. 1–2, 183–218 (2004), https://doi.org/10.1016/j.biopsycho.2004.03.007.

    Article  Google Scholar 

  6. J. J. Allen and J. P. Kline, “Frontal EEG asymmetry, emotion, and psychopathology: the first, and the next 25 years,” Biol. Psychol., 67, No. 1–2, 1–5 (2004), https://doi.org/10.1016/j.biopsycho.2004.03.001.

    Article  Google Scholar 

  7. D. M. Amodio, S. L. Master, C. M. Yee, and S. E. Taylor, “Neurocognitive components of the behavioral inhibition and activation systems: implications for theories of self-regulation,” Psychophysiology, 45, No. 1, 11–19 (2008), https://doi.org/10.1111/j.1469-8986.2007.00609.x.

    Article  Google Scholar 

  8. D. M. Amodio, J. Y. Shah, J. Sigelman, et al., “Implicit regulatory focus associated with asymmetrical frontal cortical activity,” J. Experim. Soc. Psychol., 40, No. 2, 225–232 (2004), https://doi.org/10.1016/S0022-1031(03)00100-8.

    Article  Google Scholar 

  9. A. P. Anokhin, A. C. Heath, and E. Myers, “Genetic and environmental influences on frontal EEG asymmetry: a twin study,” Biol. Psychol., 71, No. 3, 289–295 (2006), https://doi.org/10.1016/j.biopsycho.2005.06.004.

    Article  Google Scholar 

  10. M. Arato, E. Frecska, D. J. MacCrimmon, et al., “Serotonergic interhemispheric asymmetry: Neurochemical and pharmaco-EEG evidence,” Progr. Neuropsychopharmacol. Biol. Psychiatry, 15, No. 6, 759–764 (1991), https://doi.org/10.1016/0278-5846(91)90004-K.

    Article  Google Scholar 

  11. E. Baehr, J. P. Rosenfeld, R. Baehr, and C. Earnest, “Comparison of two EEG asymmetry indices in depressed patients vs. normal controls,” Int. J. Psychophysiol., 31, No. 1, 89–92 (1998), https://doi.org/10.1016/s0167-8760(98)00041-5.

    Article  Google Scholar 

  12. E. Baehr, P. Rosenfeld, L. Miller, and R. Baehr, “Premenstrual dysphoric disorder and changes in frontal alpha asymmetry.” Int. J. Psychophysiol., 52, No. 2, 159–167 (2004), https://doi.org/10.1016/j.ijpsycho.2003.06.002.

    Article  Google Scholar 

  13. M. Balconi and G. Mazza, “Lateralisation effect in comprehension of emotional facial expression: a comparison between EEG alpha band power and behavioural inhibition (BIS) and activation (BAS) systems,” Laterality, 15, No. 3, 361–384 (2010), https://doi.org/10.1080/13576500902886056.

    Article  Google Scholar 

  14. M. Balconi, M. E. Vanutelli, and E. Grippa, “Resting state and personality component (BIS/BAS) predict the brain activity (EEG and fNIRS measure) in response to emotional cues,” Brain Behav., 7, No. 5, e00686 (2017), https://doi.org/10.1002/brb3.686.

  15. L. F. Barrett, “Emotions are real,” Emotion, 12, No. 3, 413–429 (2012), https://doi.org/10.1037/a0027555.

    Article  Google Scholar 

  16. O. M. Bazanova and D. Vernon, “Interpreting EEG alpha activity,” Neurosci. Biobehav. Rev., 44, 94–110 (2014), https://doi.org/10.1016/j.neubiorev.2013.05.007.

    Article  Google Scholar 

  17. E. T. Berkman and M. D. Lieberman, “Approaching the bad and avoiding the good: lateral prefrontal cortical asymmetry distinguishes between action and valence,” J. Cogn. Neurosci., 22, No. 9, 1970– 1979 (2010), https://doi.org/10.1162/jocn.2009.21317.

    Article  Google Scholar 

  18. G. G. Berntson, G. J. Norman, and J. T. Cacioppo, “Laterality and evaluative bivalence: A neuroevolutionary perspective,” Emotion Rev., 3, No. 3, 344–346 (2011), https://doi.org/10.1177/1754073911402401.

    Article  Google Scholar 

  19. A. W. Bismark, F. A. Moreno, J. L. Stewart, et al., “Polymorphisms of the HTR1a allele are linked to frontal brain electrical asymmetry,” Biol. Psychol., 83, No. 2, 153–158 (2010), https://doi.org/10.1016/j.biopsycho.2009.12.002.

    Article  Google Scholar 

  20. G. C. Blackhart, J. P. Kline, K. F. Donohue, et al., “Affective responses to EEG preparation and their link to resting anterior EEG asymmetry,” Personal. Individ. Differ., 32, No. 1, 167–174 (2002), https://doi.org/10.1016/S0191-8869(01)00015-0.

    Article  Google Scholar 

  21. R. J. Brooker, M. J. Canen, R. J. Davidson, and H. H. Goldsmith, “Short- and long-term stability of alpha asymmetry in infants: Baseline and affective measures,” Psychophysiology, 54, No. 8, 1100–1109 (2017), https://doi.org/10.1111/psyp.12866.

    Article  Google Scholar 

  22. G. Brookshire and D. Casasanto, “Motivation and motor control: hemispheric specialization for approach motivation reverses with handedness,” PLoS One, 7, No. 4, e36036 (2012), https://doi.org/10.1371/journal.pone.0036036.

  23. K. A. Buss, J. R. Schumacher, I. Dolski, et al., “Right frontal brain activity, cortisol, and withdrawal behavior in 6-month-old infants,” Behav. Neurosci, 117, No. 1, 11–20 (2003), https://doi.org/10.1037//0735-7044.117.1.11.

    Article  Google Scholar 

  24. J. T. Cacioppo, “Feelings and emotions: roles for electrophysiological markers,” Biol. Psychol., 67, No. 1–2, 235–243 (2004), https://doi.org/10.1016/j.biopsycho.2004.03.009.

    Article  Google Scholar 

  25. C. S. Carver, “Impulse and constraint: perspectives from personality psychology, convergence with theory in other areas, and potential for integration,” Pers. Soc. Psychol. Rev., 9, No. 4, 312–333 (2005), https://doi.org/10.1207/s15327957pspr0904_2.

    Article  Google Scholar 

  26. C. S. Carver and E. Harmon-Jones, “Anger is an approach-related affect: evidence and implications,” Psychol. Bull., 135, No. 2, 183– 204 (2009), https://doi.org/10.1037/a0013965.

    Article  Google Scholar 

  27. J. J. Cerqueira, O. F. Almeida, and N. Sousa, “The stressed prefrontal cortex. Left? Right!” Brain Behav. Immun., 22, No. 5, 630–638 (2008), https://doi.org/10.1016/j.bbi.2008.01.005.

    Article  Google Scholar 

  28. A. I. Christou, S. Endo, Y. Wallis, et al., “Variation in serotonin transporter linked polymorphic region (5-HTTLPR) short/long genotype modulates resting frontal electroencephalography asymmetries in children,” Develop. Psychopathol., 28, No. 1, 239–250 (2016), https://doi.org/10.1017/S0954579415000413.

    Article  Google Scholar 

  29. J. A. Coan and J. J. Allen, “Frontal EEG asymmetry as a moderator and mediator of emotion,” Biol. Psychol., 67, No. 1–2, 7–49 (2004), https://doi.org/10.1016/j.biopsycho.2004.03.002.

    Article  Google Scholar 

  30. J. A. Coan and J. J. Allen, “Varieties of emotional experience during voluntary emotional facial expressions,” Ann. N.Y. Acad. Sci., 1000, 375–379 (2003), https://doi.org/10.1196/annals.1280.034.

    Article  Google Scholar 

  31. J. A. Coan, J. J. Allen, and E. Harmon-Jones, “Voluntary facial expression and hemispheric asymmetry over the frontal cortex,” Psychophysiology, 38, No. 6, 912–925 (2001), https://doi.org/10.1111/1469-8986.3860912.

    Article  Google Scholar 

  32. J. A. Coan, J. J. Allen, and P. E. McKnight, “A capability model of individual differences in frontal EEG asymmetry,” Biol. Psychol., 72, No. 2, 198–207 (2006), https://doi.org/10.1016/j.biopsycho.2005.10.003.

    Article  Google Scholar 

  33. A. D. Craig, “Forebrain emotional asymmetry: a neuroanatomical basis?” Trends Cogn. Sci., 9, No. 12, 566–571 (2005), https://doi.org/10.1016/j.tics.2005.10.005.

    Article  Google Scholar 

  34. R. J. Davidson, “Affective neuroscience and psychophysiology: toward a synthesis,” Psychophysiology, 40, No. 5, 655–665 (2003), https://doi.org/10.1111/1469-8986.00067.

    Article  Google Scholar 

  35. R. J. Davidson, “Affective style and affective disorders: Perspectives from affective neuroscience,” Cogn. Emot., 12, No. 3, 307–330 (1998), https://doi.org/10.1080/026999398379628.

    Article  Google Scholar 

  36. R. J. Davidson, “Affective style, psychopathology, and resilience: brain mechanisms and plasticity,” Am. Psychol., 55, No. 11, 1196–1214 (2000), https://doi.org/10.1037//0003-066x.55.11.1196.

    Article  Google Scholar 

  37. R. J. Davidson, “Anterior cerebral asymmetry and the nature of emotion,” Brain Cogn., 20, No. 1, 125–151 (1992), https://doi.org/10.1016/0278-2626(92)90065-t.

    Article  Google Scholar 

  38. R. J. Davidson, “Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums,” Psychophysiology, 35, No. 5, 607–614 (1998), https://doi.org/10.1017/s0048577298000134.

    Article  Google Scholar 

  39. R. J. Davidson, “Asymmetric brain function, affective style, and psychopathology: The role of early experience and plasticity,” Develop. Psychopathol., 6, No. 4, 741–758 (1994), https://doi.org/10.1017/S0954579400004764.

    Article  Google Scholar 

  40. R. J. Davidson, “Cerebral asymmetry and emotion: Conceptual and methodological conundrums,” Cogn. Emot., 7, No. 1, 115–138 (1993), https://doi.org/10.1080/02699939308409180.

    Article  Google Scholar 

  41. R. J. Davidson, “EEG measures of cerebral asymmetry: conceptual and methodological issues,” Int. J. Neurosci., 39, No. 1–2, 71–89 (1988), https://doi.org/10.3109/00207458808985694.

    Article  Google Scholar 

  42. R. J. Davidson, “Emotion and Affective style: Hemispheric substrates,” Psychol. Sci., 3, No. 1, 39–43 (1992), https://doi.org/10.1111/j.1467-9280.1992.tb00254.x.

    Article  Google Scholar 

  43. R. J. Davidson, “Parsing affective space: Perspectives from neuropsychology and psychophysiology,” Neuropsychology, 7, No. 4, 464–475 (1993), https://doi.org/10.1037/0894-4105.7.4.464.

    Article  Google Scholar 

  44. R. J. Davidson, “Toward a biology of personality and emotion,” Ann. N.Y. Acad. Sci., 935, 191–207 (2001), https://doi.org/10.1111/j.1749-6632.2001.tb03481.x.

    Article  Google Scholar 

  45. R. J. Davidson, “Well-being and affective style: neural substrates and biobehavioural correlates,” Phil. Trans. R. Soc. B. Biol. Sci., 359, No. 1449, 1395–1411 (2004), https://doi.org/10.1098/rstb.2004.1510.

    Article  Google Scholar 

  46. R. J. Davidson, “What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research,” Biol. Psychol., 67, No. 1–2, 219–233 (2004), https://doi.org/10.1016/j.biopsycho.2004.03.008.

    Article  Google Scholar 

  47. R. J. Davidson, C. C. Coe, I. Dolski, and B. Donzella, “Individual differences in prefrontal activation asymmetry predict natural killer cell activity at rest and in response to challenge,” Brain Behav. Immun., 13, No. 2, 93–108 (1999), https://doi.org/10.1006/brbi.1999.0557.

    Article  Google Scholar 

  48. R. J. Davidson and N. A. Fox, “Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants,” Science, 218, No. 4578, 1235–1237 (1982), https://doi.org/10.1126/science.7146906.

    Article  Google Scholar 

  49. R. J. Davidson and W. Irwin, “The functional neuroanatomy of emotion and affective style,” Trends Cogn. Sci., 3, No. 1, 11–21 (1999), https://doi.org/10.1016/s1364-6613(98)01265-0.

    Article  Google Scholar 

  50. R. J. Davidson, D. C. Jackson, and N. H. Kalin, “Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience,” Psychol. Bull., 126, No. 6, 890–909 (2000), https://doi.org/10.1037/0033-2909.126.6.890.

    Article  Google Scholar 

  51. R. J. Davidson, J. Kabat-Zinn, J. Schumacher, et al., “Alterations in brain and immune function produced by mindfulness meditation,” Psychosom. Med., 65, No. 4, 564–570 (2003), https://doi.org/10.1097/01.psy.0000077505.67574.e3.

    Article  Google Scholar 

  52. R. J. Davidson, N. H. Kalin, and S. E. Shelton, “Lateralized response to diazepam predicts temperamental style in rhesus monkeys,” Behav. Neurosci, 107, No. 6, 1106–1110 (1993), https://doi.org/10.1037//0735-7044.107.6.1106.

    Article  Google Scholar 

  53. R. J. Davidson, G. E. Schwartz, C. Saron, et al., “Frontal versus parietal EEG asymmetry during positive and negative affect,” Psychophysiology, 16, 202–203 (1979).

    Google Scholar 

  54. R. J. Davidson and S. K. Sutton, “Affective neuroscience: the emergence of a discipline,” Curr. Opin. Neurobiol., 5, No. 2, 217–224 (1995), https://doi.org/10.1016/0959-4388(95)80029-8.

    Article  Google Scholar 

  55. G. Dawson, “Frontal electroencephalographic correlates of individual differences in emotion expression in infants: A brain systems perspective on emotion,” Monogr. Soc. Res. Child Dev., 59, No. 2–3, 135–151 (1994), https://doi.org/10.2307/1166142.

    Article  Google Scholar 

  56. H. A. Demaree, D. E. Everhart, E. A. Youngstrom, and D. W. Harrison, “Brain lateralization of emotional processing: historical roots and a future incorporating ‘dominance’,” Behav. Cogn. Neurosci. Rev., 4, No. 1, 3–20 (2005), https://doi.org/10.1177/1534582305276837.

  57. H. Duan, H. Fang, Y. Zhang, et al., “Associations between cortisol awakening response and resting electroencephalograph asymmetry,” PeerJ, 7, e7059 (2019), https://doi.org/10.7717/peerj.7059.

    Article  Google Scholar 

  58. R. Düsing, M. Tops, E. L. Radtke, et al., “Relative frontal brain asymmetry and cortisol release after social stress: The role of action orientation,” Biol. Psychol., 115, 86–93 (2016), https://doi.org/10.1016/j.biopsycho.2016.01.012.

    Article  Google Scholar 

  59. T. Field, M. Diego, M. Hernandez-Reif, et al., “Relative right versus left frontal EEG in neonates,” Dev. Psychobiol., 41, No. 2, 147–155 (2002), https://doi.org/10.1002/dev.10061.

    Article  Google Scholar 

  60. P. S. Foster and D. W. Harrison, “Magnitude of cerebral asymmetry at rest: covariation with baseline cardiovascular activity,” Brain Cogn., 61, No. 3, 286–297 (2006), https://doi.org/10.1016/j.bandc.2006.02.004.

    Article  Google Scholar 

  61. N. A. Fox, “If it’s not left, it’s right. Electroencephalograph asymmetry and the development of emotion,” Am. Psychol., 46, No. 8, 863– 872 (1991), https://doi.org/10.1037//0003-066x.46.8.863.

    Article  Google Scholar 

  62. N. A. Fox, M. A. Bell, and N. A. Jones, “Individual differences in response to stress and cerebral asymmetry,” Dev. Neuropsychol., 8, No. 2–3, 161–184 (1992), https://doi.org/10.1080/87565649209540523.

    Article  Google Scholar 

  63. N. A. Fox, H. A. Henderson, P. J. Marshall, et al., “Behavioral inhibition: linking biology and behavior within a developmental framework,” Annu. Rev. Psychol., 56, 235–262 (2005), https://doi.org/10.1146/annurev.psych.55.090902.141532.

    Article  Google Scholar 

  64. N. A. Fox, H. A. Henderson, K. H. Rubin, et al., “Continuity and discontinuity of behavioral inhibition and exuberance: psychophysiological and behavioral infl uences across the fi rst four years of life,” Child Dev., 72, No. 1, 1–21 (2001), https://doi.org/10.1111/1467-8624.00262.

    Article  Google Scholar 

  65. P. A. Gable and E. Harmon-Jones, “Trait behavioral approach sensitivity (BAS) relates to early (<150 ms) electrocortical responses to appetitive stimuli,” Soc. Cogn. Affect. Neurosci., 8, No. 7, 795–798 (2013), https://doi.org/10.1093/scan/nss072.

    Article  Google Scholar 

  66. P. A. Gable, L. B. Neal, and A. H. Threadgill, “Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative right frontal asymmetry,” Psychophysiology, 55, No. 1 (2018), https://doi.org/10.1111/psyp.12910.

  67. Y. Gao, C. Tuvblad, A. Raine, et al., “Genetic and environmental influences on frontal EEG asymmetry and alpha power in 9–10-yearold twins,” Psychophysiology, 46, No. 4, 787–796 (2009), https://doi.org/10.1111/j.1469-8986.2009.00815.x.

    Article  Google Scholar 

  68. R. I. Goldman, J. M. Stern, J. Engel, Jr., and M. S. Cohen, “Simultaneous EEG and fMRI of the alpha rhythm,” Neuroreport, 13, No. 18, 2487– 2492 (2002), https://doi.org/10.1097/01.wnr.0000047685.08940.d0.

    Article  Google Scholar 

  69. B. L. Goldstein, S. A. Shankman, and A. Kujawa, “Positive and negative emotionality at age 3 predicts change in frontal EEG asymmetry across early childhood,” J. Abnorm.Child Psychol., 47, No. 2, 209–219 (2019), https://doi.org/10.1007/s10802-018-0433-7.

    Article  Google Scholar 

  70. S. M. Gorka, K. L. Phan, and S. A. Shankman, “Convergence of EEG and fMRI measures of reward anticipation,” Biol. Psychol., 112, 12–19 (2015), https://doi.org/10.1016/j.biopsycho.2015.09.007.

    Article  Google Scholar 

  71. J. A. Gray, “The psychophysiological basis of introversion-extraversion,” Behav. Res. Ther., 8, No. 3, 249–266 (1970), https://doi.org/10.1016/0005-7967(70)90069-0.

    Article  Google Scholar 

  72. J. R. Gray, T. S. Braver, and M. E. Raichle, “Integration of emotion and cognition in the lateral prefrontal cortex,” Proc. Natl. Acad. Sci. USA, 99, No. 6, 4115–4120 (2002), https://doi.org/10.1073/pnas.062381899.

    Article  Google Scholar 

  73. G. M. Grimshaw and D. Carmel, “An asymmetric inhibition model of hemispheric differences in emotional processing,” Front. Psychol., 5, e489 (2014), https://doi.org/10.3389/fpsyg.2014.00489.

    Article  Google Scholar 

  74. S. Grissmann, J. Faller, C. Scharinger, et al., “Electroencephalography based analysis of working memory load and affective valence in an N-back task with emotional stimuli,” Front. Hum. Neurosci., 11, e616 (2017), https://doi.org/10.3389/fnhum.2017.00616.

    Article  Google Scholar 

  75. S. Grissmann, T. O. Zander, J. Faller, et al., “Affective aspects of perceived loss of control and potential implications for brain–computer interfaces,” Front. Hum. Neurosci., 11, e370 (2017), https://doi.org/10.3389/fnhum.2017.00370.

    Article  Google Scholar 

  76. D. Hagemann, “Individual differences in anterior EEG asymmetry: methodological problems and solutions,” Biol. Psychol., 67, No. 1–2, 157–182 (2004), https://doi.org/10.1016/j.biopsycho.2004.03.006.

  77. D. Hagemann, J. Hewig, J. Seifert, et al., “The latent state-trait structure of resting EEG asymmetry: replication and extension,” Psychophysiology, 42, No. 6, 740–752 (2005), https://doi.org/10.1111/j.1469-8986.2005.00367.x.

    Article  Google Scholar 

  78. D. Hagemann and E. Naumann, “The effects of ocular artifacts on (lateralized) broadband power in the EEG,” Clin. Neurophysiol., 112, No. 2, 215–231 (2001), https://doi.org/10.1016/s1388-2457(00)00541-1.

    Article  Google Scholar 

  79. D. Hagemann, E. Naumann, and J. F. Thayer, “The quest for the EEG reference revisited: a glance from brain asymmetry research,” Psychophysiology, 38, No. 5, 847–857 (2001), https://doi.org/10.1111/1469-8986.3850847.

    Article  Google Scholar 

  80. D. Hagemann, E. Naumann, J. F. Thayer, and D. Bartussek, “Does resting electroencephalograph asymmetry refl ect a trait? an application of latent state-trait theory,” J. Pers. Soc. Psychol., 82, No. 4, 619–641 (2002), https://doi.org/10.1037/0022-3514.82.4.619.

    Article  Google Scholar 

  81. C. Harmon-Jones, B. Schmeichel, E. Mennitt, and E. Harmon-Jones, “The expression of determination: similarities between anger and approach-related positive affect,” J. Pers. Soc. Psychol., 100, No. 1, 172–181 (2011), https://doi.org/10.1037/a0020966.

    Article  Google Scholar 

  82. E. Harmon-Jones, “Clarifying the emotive functions of asymmetrical frontal cortical activity,” Psychophysiology, 40, No. 6, 838–848 (2003), https://doi.org/10.1111/1469-8986.00121.

    Article  Google Scholar 

  83. E. Harmon-Jones, “Contributions from research on anger and cognitive dissonance to understanding the motivational functions of asymmetrical frontal brain activity,” Biol. Psychol., 67, No. 1–2, 51–76 (2004), https://doi.org/10.1016/j.biopsycho.2004.03.003.

    Article  Google Scholar 

  84. E. Harmon-Jones, “On the relationship of frontal brain activity and anger: Examining the role of attitude toward anger,” Cogn. Emot., 18, No. 3, 337–361 (2004), https://doi.org/10.1080/02699930341000059.

    Article  Google Scholar 

  85. E. Harmon-Jones and J. J. Allen, “Behavioral activation sensitivity and resting frontal EEG asymmetry: covariation of putative indicators related to risk for mood disorders,” J. Abnormal Psychol., 106, No. 1, 159–163 (1997), https://doi.org/10.1037//0021-843x.106.1.159.

    Article  Google Scholar 

  86. E. Harmon-Jones and P. A. Gable, “On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence,” Psychophysiology, 55, No. 1 (2018), https://doi.org/10.1111/psyp.12879.

  87. E. Harmon-Jones, P. A. Gable, and C. K. Peterson, “The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update,” Biol. Psychol., 84, No. 3, 451–462 (2010), https://doi.org/10.1016/j.biopsycho.2009.08.010.

    Article  Google Scholar 

  88. E. Harmon-Jones, C. Harmon-Jones, D. M. Amodio, and P. A. Gable, “Attitudes toward emotions,” J. Pers. Soc. Psychol., 101, No. 6, 1332–1350 (2011), https://doi.org/10.1037/a0024951.

    Article  Google Scholar 

  89. E. Harmon-Jones, C. K. Peterson, and C. R. Harris, “Jealousy: novel methods and neural correlates,” Emotion, 9, No. 1, 113–117 (2009), https://doi.org/10.1037/a0014117.

    Article  Google Scholar 

  90. E. Harmon-Jones, J. Sigelman, A. Bohlig, and C. Harmon-Jones, “Anger, coping, and frontal cortical activity: The effect of coping potential on anger-induced left frontal activity,” Cogn. Emot., 17, No. 1, 1–24 (2003), https://doi.org/10.1080/02699930302278.

    Article  Google Scholar 

  91. E. Harmon-Jones, K. Vaughn-Scott, S. Mohr, et al., “The effect of manipulated sympathy and anger on left and right frontal cortical activity,” Emotion, 4, No. 1, 95–101 (2004), https://doi.org/10.1037/1528-3542.4.1.95.

    Article  Google Scholar 

  92. J. Hewig, “Intentionality in frontal asymmetry research,” Psychophysiology, 55, No. 1 (2018), https://doi.org/10.1111/psyp.12852.

  93. J. Hewig, D. Hagemann, J. Seifert, et al., “On the selective relation of frontal cortical asymmetry and anger-out versus anger-control,” J. Pers. Soc. Psychol., 87, No. 6, 926–939 (2004), https://doi.org/10.1037/0022-3514.87.6.926.

    Article  Google Scholar 

  94. J. Hewig, D. Hagemann, J. Seifert, et al., “The relation of cortical activity and BIS/BAS on the trait level,” Biol. Psychol., 71, No. 1, 42–53 (2006), https://doi.org/10.1016/j.biopsycho.2005.01.006.

    Article  Google Scholar 

  95. J. Hewig, W. Schlotz, F. Gerhards, et al., “Associations of the cortisol awakening response (CAR) with cortical activation asymmetry during the course of an exam stress period,” Psychoneuroendocrinology, 33, No. 1, 83–91 (2008), https://doi.org/10.1016/j.psyneuen.2007.10.004.

    Article  Google Scholar 

  96. K. E. Hill, W. S. Neo, A. Hernandez, et al., “Intergenerational transmission of frontal alpha asymmetry among mother-infant dyads,” Biol. Psychiatry, Cogn. Neurosci. Neuroimaging. 5, No. 4, 420–428 (2020), https://doi.org/10.1016/j.bpsc.2019.12.003.

    Article  Google Scholar 

  97. C. E. Hostinar, R. J. Davidson, E. K. Graham, et al., “Frontal brain asymmetry, childhood maltreatment, and low-grade infl ammation at midlife,” Psychoneuroendocrinology, 75, 152–163 (2017), https://doi.org/10.1016/j.psyneuen.2016.10.026.

    Article  Google Scholar 

  98. G. Z. Howarth, N. B. Fettig, T. W. Curby, and M. A. Bell, “Frontal electroencephalogram asymmetry and temperament across infancy and early childhood: An exploration of stability and bidirectional relations,” Child Dev., 87, No. 2, 465–476 (2016), https://doi.org/10.1111/cdev.12466.

    Article  Google Scholar 

  99. R. J. Hwang, L. F. Chen, T. C. Yeh, et al., “The resting frontal alpha asymmetry across the menstrual cycle: a magnetoencephalographic study,” Horm. Behav., 54, No. 1, 28–33 (2008), https://doi.org/10.1016/j.yhbeh.2007.11.007.

    Article  Google Scholar 

  100. Y. Huang, R. Zhou, H. Cui, et al., “Variations in resting frontal alpha asymmetry between high- and low-neuroticism females across the menstrual cycle,” Psychophysiology, 52, No. 2, 182–191 (2015), https://doi.org/10.1111/psyp.12301.

    Article  Google Scholar 

  101. R. Huffmeijer, L. R. Alink, M. Tops, et al., “Asymmetric frontal brain activity and parental rejection predict altruistic behavior: moderation of oxytocin effects,” Cogn. Affect. Behav. Neurosci., 12, No. 2, 382–392 (2012), https://doi.org/10.3758/s13415-011-0082-6.

    Article  Google Scholar 

  102. R. J. Huster, S. Stevens, A. L. Gerlach, and F. Rist, “A spectral analytic approach to emotional responses evoked through picture presentation,” Int.. J. Psychophysiol., 72, No. 2, 212–216 (2009), https://doi.org/10.1016/j.ijpsycho.2008.

    Article  Google Scholar 

  103. N. A. Jones, T. Field, M. Davalos, and J. Pickens, “EEG stability in infants/children of depressed mothers,” Child Psychiatry Hum. Dev., 28, No. 2, 59–70 (1997), https://doi.org/10.1023/a:1025197101496.

    Article  Google Scholar 

  104. N. H. Kalin, C. Larson, S. E. Shelton, and R. J. Davidson, “Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys,” Behav. Neurosci, 112, No. 2, 286–292 (1998), https://doi.org/10.1037//0735-7044.112.2.286.

    Article  Google Scholar 

  105. D. H. Kang, R. J. Davidson, C. L. Coe, et al., “Frontal brain asymmetry and immune function,” Behav. Neurosci, 105, No. 6, 860–869 (1991), https://doi.org/10.1037//0735-7044.105.6.860.

    Article  Google Scholar 

  106. A. C. Katz, C. Sarapas, J. R. Bishop, et al., “The mediating effect of prefrontal asymmetry on the relationship between the COMT Val(158)Met SNP and trait consummatory positive affect,” Cogn. Emot., 29, No. 5, 867–881 (2015), https://doi.org/10.1080/02699931.2014.951030.

    Article  Google Scholar 

  107. W. Käckenmester, L. Kroencke, and J. Wacker, “Frontal asymmetry predicts the incentive value of perceptual information,” Int. J. Psychophysiol., 134, 22–29 (2018), https://doi.org/10.1016/j.ijpsycho.2018.10.002.

    Article  Google Scholar 

  108. N. J. Kelley, R. Hortensius, D. J. L. G. Schutter, and E. Harmon-Jones, “The relationship of approach/avoidance motivation and asymmetric frontal cortical activity: A review of studies manipulating frontal asymmetry,” Int. J. Psychophysiol., 119, 19–30 (2017), https://doi.org/10.1016/j.ijpsycho.2017.03.001.

    Article  Google Scholar 

  109. W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillations: The inhibition-timing hypothesis,” Brain Res. Rev., 53, No. 1, 63–88 (2007), https://doi.org/10.1016/j.brainresrev.2006.06.003.

    Article  Google Scholar 

  110. J. P. Kline, J. J. B. Allen, and G. E. Schwartz, “Is left frontal brain activation in defensiveness gender specific?” J. Abnormal Psychol., 107, No. 1, 149–153 (1998), https://doi.org/10.1037/0021-843X.107.1.149.

    Article  Google Scholar 

  111. J. P. Kline, G. C. Blackhart, and T. E. Joiner, “Sex, lie scales, and electrode caps: an interpersonal context for defensiveness and anterior electroencephalographic asymmetry,” Personal. Individ. Differ., 33, No. 3, 459–478 (2002), https://doi.org/10.1016/S0191-8869(01)00167-2.

    Article  Google Scholar 

  112. J. P. Kline, G. C. Blackhart, and W. C. Williams, “Anterior EEG asymmetries and opponent process theory,” Int. J. Psychophysiol., 63, No. 3, 302–307 (2007), https://doi.org/10.1016/j.ijpsycho.2006.12.003.

    Article  Google Scholar 

  113. K. Koller-Schlaud, J. Querbach, J. Behr, et al., “Test-retest reliability of frontal and parietal alpha asymmetry during presentation of emotional face stimuli in healthy subjects,” Neuropsychobiology, 79, No. 6 (2020), https://doi.org/10.1159/000505783.

  114. W. J. Kop, S. J. Synowski, M. E. Newell, et al., “Autonomic nervous system reactivity to positive and negative mood induction: The role of acute psychological responses and frontal electrocortical activity,” Biol. Psychol., 86, No. 3, 230–238 (2011), https://doi.org/10.1016/j.biopsycho.2010.12.003.

    Article  Google Scholar 

  115. K. Koslov, W. B. Mendes, P. E. Pajtas, and D. A. Pizzagalli, “Greater left resting intracortical activity as a buffer to social threat,” Psychol. Sci., 22, No. 5, 641–649 (2011), https://doi.org/10.1177/0956797611403156.

    Article  Google Scholar 

  116. A. Lahat, A. Tang, M. Tanaka, et al., “Longitudinal associations among child maltreatment, resting frontal electroencephalogram asymmetry, and adolescent shyness,” Child Dev., 89, No. 3, 746–757 (2018), https://doi.org/10.1111/cdev.13060.

    Article  Google Scholar 

  117. P. J. Lang, M. M. Bradley, and B. N. Cuthbert, “Emotion, attention, and the startle refl ex,” Psychol. Rev., 97, No. 3, 377–395 (1990), https://doi.org/10.1037/0033-295X.97.3.377.

    Article  Google Scholar 

  118. H. Laufs, A. Kleinschmidt, A. Beyerle, et al., “EEG-correlated fMRI of human alpha activity,” NeuroImage, 19, No. 4, 1463–1476 (2003), https://doi.org/10.1016/s1053-8119(03)00286-6.

    Article  Google Scholar 

  119. T. W. Lee, Y. W. Yu, C. J. Hong, et al., “The infl uence of serotonin transporter polymorphisms on cortical activity: a resting EEG study,” BMC Neurosci., 12, e33 (2011), https://doi.org/10.1186/1471-2202-12-33.

    Article  Google Scholar 

  120. R. S. Lewis, N. Y. Weekes, and T. H. Wang, “The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health,” Biol. Psychol., 75, No. 3, 239–247 (2007), https://doi.org/10.1016/j.biopsycho.2007.03.004.

    Article  Google Scholar 

  121. D. Li, C. Wang, Q. Yin, et al., “Frontal cortical asymmetry may partially mediate the infl uence of social power on anger expression,” Front. Psychol., 7, e73 (2016), https://doi.org/10.3389/fpsyg.2016.00073.

    Article  Google Scholar 

  122. K. A. Lindquist, A. B. Satpute, T. D. Wager, et al., “The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature,” Cereb. Cortex, 26, No. 5, 1910– 1922 (2016), https://doi.org/10.1093/cercor/bhv001.

    Article  Google Scholar 

  123. L. Liu, M. Yang, Z. Han, et al., “Frontal EEG lateralization predicts individuals’ emotional fl exibility,” Scientia Sinica Vitae, 44, No. 6, 614–622 (2014), https://doi.org/10.1360/N052013-00061.

    Article  Google Scholar 

  124. Y.-J. Liu, M. Yu, G. Zhao, et al., “Real-time movie-induced discrete emotion recognition from EEG signals,” IEEE T. Affect. Comput., 9, No. 4, 550–562 (2018), https://doi.org/10.1109/TAFFC.2017.2660485.

    Article  Google Scholar 

  125. S. L. Master, D. M. Amodio, A. L. Stanton, et al., “Neurobiological correlates of coping through emotional approach,” Brain Behav. Immun., 23, No. 1, 27–35 (2009), https://doi.org/10.1016/j.bbi.2008.04.007.

    Article  Google Scholar 

  126. K. J. Mathewson, A. Hashemi, B. Sheng, et al., “Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: a study of short-term test-retest reliability,” Front. Aging Neurosci., 7, e177 (2015), https://doi.org/10.3389/fnagi.2015.00177.

    Article  Google Scholar 

  127. K. A. McLaughlin, N. A. Fox, C. H. Zeanah, and C. A. Nelson, “Adverse rearing environments and neural development in children: the development of frontal electroencephalogram asymmetry,” Biol. Psychiatry, 70, No. 11, 1008–1015 (2011), https://doi.org/10.1016/j.biopsych.2011.08.006.

    Article  Google Scholar 

  128. M. B. Meyers and B. D. Smith, “Cerebral processing of nonverbal affective stimuli: differential effects of cognitive and affective sets on hemispheric asymmetry,” Biol. Psychol., 24, No. 1, 67–84 (1987), https://doi.org/10.1016/0301-0511(87)90100-1.

    Article  Google Scholar 

  129. G. A. Miller, L. D. Crocker, J. M. Spielberg, et al., “Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology,” Front. Integr. Neurosci., 7, e2 (2013), https://doi.org/10.3389/fnint.2013.00002.

    Article  Google Scholar 

  130. J. A. Moynihan, B. P. Chapman, R. Klorman, et al., “Mindfulnessbased stress reduction for older adults: effects on executive function, frontal alpha asymmetry and immune function,” Neuropsychobiology, 68, No. 1 (2013), https://doi.org/10.1159/000350949.

  131. B. C. Müller, N. Kühn-Popp, J. Meinhardt, et al., “Long-term stability in children’s frontal EEG alpha asymmetry between 14-months and 83-months,” Int. J. Dev. Neurosci., 41, 110–114 (2015), https://doi.org/10.1016/j.ijdevneu.2015.01.002.

    Article  Google Scholar 

  132. F. C. Murphy, I. Nimmo-Smith, and A. D. Lawrence, “Functional neuroanatomy of emotions: a meta-analysis,” Cogn. Affect. Behav. Neurosci., 3, No. 3, 207–233 (2003), https://doi.org/10.3758/cabn.3.3.207.

    Article  Google Scholar 

  133. M. S. Myslobodsky, R. Coppola, J. Bar-Ziv, et al., “EEG asymmetries may be affected by cranial and brain parenchymal asymmetries,” Brain Topogr., 1, No. 4, 221–228 (1989).

    Article  Google Scholar 

  134. K. Nash, M. Inzlicht, and I. McGregor, “Approach-related left prefrontal EEG asymmetry predicts muted error-related negativity,” Biol. Psychol., 91, No. 1, 96–102 (2012), https://doi.org/10.1016/j.biopsycho.2012.05.005.

    Article  Google Scholar 

  135. T. R. Oakes, D. A. Pizzagalli, A. M. Hendrick, et al., “Functional coupling of simultaneous electrical and metabolic activity in the human brain,” Hum. Brain Mapp., 21, No. 4, 257–270 (2004), https://doi.org/10.1002/hbm.20004.

    Article  Google Scholar 

  136. M. Palmiero and L. Piccardi, “Frontal EEG asymmetry of mood: A mini-review,” Front. Behav. Neurosci., 11, e224 (2017), https://doi.org/10.3389/fnbeh.2017.00224.

    Article  Google Scholar 

  137. I. Papousek, E. M. Reiser, G. Schulter, et al., “Serotonin transporter genotype (5-HTTLPR) and electrocortical responses indicating the sensitivity to negative Emotional cues,” Emotion, 13, No. 6, 1173– 1181 (2013), https://doi.org/10.1037/a0033997.

    Article  Google Scholar 

  138. I. Papousek and G. Schulter, “Covariations of EEG asymmetries and emotional states indicate that activity at frontopolar locations is particularly affected by state factors,” Psychophysiology, 39, No. 3, 350–360 (2002), https://doi.org/10.1017/s0048577201393083.

    Article  Google Scholar 

  139. I. Papousek and G. Schulter, “Different temporal stability and partial independence of EEG asymmetries from different locations: Implications for laterality research,” Int. J. Neurosci., 93, No. 1–2, 87–100 (1998), https://doi.org/10.3109/00207459808986415.

    Article  Google Scholar 

  140. I. Papousek, G. Schulter, and B. Lang, “Effects of emotionally contagious fi lms on changes in hemisphere-specifi c cognitive performance,” Emotion, 9, No. 4, 510–519 (2009), https://doi.org/10.1037/a0016299.

    Article  Google Scholar 

  141. I. Papousek, G. Schulter, E. M. Weiss, et al., “Frontal brain asymmetry and transient cardiovascular responses to the perception of humor,” Biol. Psychol., 93, No. 1, 114–121 (2013), https://doi.org/10.1016/j.biopsycho.2012.12.004.

    Article  Google Scholar 

  142. I. Papousek and G. Schulter, “Manipulation of frontal brain asymmetry by cognitive tasks,” Brain Cogn., 54, No. 1, 43–51 (2004), https://doi.org/10.1016/S0278-2626(03)00258-6.

    Article  Google Scholar 

  143. I. Papousek, E. M. Weiss, G. Schulter, et al., “Prefrontal EEG alpha asymmetry changes while observing disaster happening to other people: cardiac correlates and prediction of emotional impact,” Biol. Psychol., 103, 184–194 (2014), https://doi.org/10.1016/j.biopsycho.2014.09.001.

    Article  Google Scholar 

  144. C. A. Pauls, J. Wacker, and N. W. Crost, “The two components of social desirability and their relations to resting frontal brain asymmetry,” J. Indiv. Diff., 26, 29–42 (2005), https://doi.org/10.1027/1614-0001.26.1.29.

    Article  Google Scholar 

  145. G. Peeters, “The positive-negative asymmetry: On cognitive consistency and positivity bias,” Eur. J. Soc. Psychol., 1, No. 4, 455–474 (1971), https://doi.org/10.1002/ejsp.2420010405.

    Article  Google Scholar 

  146. C. K. Peterson and E. Harmon-Jones, “Circadian and seasonal variability of resting frontal EEG asymmetry,” Biol. Psychol., 80, No. 3, 315–320 (2009), https://doi.org/10.1016/j.biopsycho.2008.11.002.

    Article  Google Scholar 

  147. C. K. Peterson, A. J. Shackman, and E. Harmon-Jones, “The role of asymmetrical frontal cortical activity in aggression,” Psycho physiology, 45, No. 1, 86–92 (2008), https://doi.org/10.1111/j.1469-8986.2007.00597.x.

    Article  Google Scholar 

  148. G. Pfurtscheller, A. Stancák, Jr., and C. Neuper, “Event-related synchronization (ERS) in the alpha band – an electrophysiological correlate of cortical idling: a review,” Int. J. Psychophysiol., 24, No. 1–2, 39–46 (1996), https://doi.org/10.1016/s0167-8760(96)00066-9.

    Article  Google Scholar 

  149. B. Pitchford and K. M. Arnell, “Self-control and its influence on global/local processing: An investigation of the role of frontal alpha asymmetry and dispositional approach tendencies,” Atten. Percept. Psychophys., 81, No. 1, 173–187 (2019), https://doi.org/10.3758/s13414-018-1610-z.

    Article  Google Scholar 

  150. K. L. Poole, D. L. Santesso, R. J. Van Lieshout, and L. A. Schmidt, “Trajectories of frontal brain activity and socio-emotional development in children,” Dev. Psychobiol., 60, No. 4, 353–363 (2018), https://doi.org/10.1002/dev.21620.

    Article  Google Scholar 

  151. T. F. Price, R. Hortensius, and E. Harmon-Jones, “Neural and behavioral associations of manipulated determination facial expressions,” Biol. Psychol., 94, No. 1, 221–227 (2013), https://doi.org/10.1016/j.biopsycho.2013.06.001.

    Article  Google Scholar 

  152. C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol., 104, 75–81 (2015), https://doi.org/10.1016/j.biopsycho.2014.11.014.

    Article  Google Scholar 

  153. G. J. Quirk and J. S. Beer, “Prefrontal involvement in the regulation of emotion: convergence of rat and human studies,” Curr. Opin. Neurobiol., 16, No. 6, 723–727 (2006), https://doi.org/10.1016/j.conb.2006.07.004.

    Article  Google Scholar 

  154. S. J. Reznik and J. J. B. Allen, “Frontal asymmetry as a mediator and moderator of emotion: An updated review,” Psychophysiology, 55, No. 1 (2018), https://doi.org/10.1111/psyp.12965.

  155. J. K. Rilling, J. T. Winslow, D. O’Brien, et al., “Neural correlates of maternal separation in rhesus monkeys,” Biol. Psychiatry, 49, No. 2, 146–157 (2001), https://doi.org/10.1016/s0006-3223(00)00977-x.

    Article  Google Scholar 

  156. P. Rohlfs and J. M. Ramírez, “Aggression and brain asymmetries: A theoretical review,” Aggress. Violent Behav., 11, No. 3, 283–297 (2006), https://doi.org/10.1016/j.avb.2005.09.001.

    Article  Google Scholar 

  157. M. A. Rosenkranz, D. C. Jackson, K. M. Dalton, et al., “Affective style and in vivo immune response: neurobehavioral mechanisms,” Proc. Natl. Acad. Sci. USA, 100, No. 19, 11148–11152 (2003), https://doi.org/10.1073/pnas.1534743100.

    Article  Google Scholar 

  158. S. Roth and L. J. Cohen, “Approach, avoidance, and coping with stress,” Am. Psychol., 41, No. 7, 813–819 (1986), https://doi.org/10.1037//0003-066x.41.7.813.

    Article  Google Scholar 

  159. H. A. Sackeim, M. S. Greenberg, A. L. Weiman, et al., “Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence,” Arch. Neurol., 39, No. 4, 210–218 (1982), https://doi.org/10.1001/archneur.1982.00510160016003.

    Article  Google Scholar 

  160. B. Saletu, N. Brandstätter, M. Metka, et al., “Double-blind, placebo- controlled, hormonal, syndromal and EEG mapping studies with transdermal oestradiol therapy in menopausal depression,” Psychopharmacology, 122, No. 4, 321–329 (1995), https://doi.org/10.1007/bf02246261.

    Article  Google Scholar 

  161. C. E. Schaffer, R. J. Davidson, and C. Saron, “Frontal and parietal electroencephalogram asymmetry in depressed and nondepressed subjects,” Biol. Psychiatry, 18, No. 7, 753–762 (1983).

    Google Scholar 

  162. P. C. Schmid, L. M. Hackel, L. Jasperse, and D. M. Amodio, “Frontal cortical effects on feedback processing and reinforcement learning: Relation of EEG asymmetry with the feedback-related negativity and behavior,” Psychophysiology, 55, No. 1 (2018), https://doi.org/10.1111/psyp.12911.

  163. L. A. Schmidt, “Patterns of second-by-second resting frontal brain (EEG) asymmetry and their relation to heart rate and temperament in 9-month-old human infants,” Personal. Individ. Differ., 44, No. 1, 216–225 (2008), https://doi.org/10.1016/j.paid.2007.08.001.

    Article  Google Scholar 

  164. L. A. Schmidt, N. A. Fox, M. C. Goldberg, et al., “Effects of acute prednisone administration on memory, attention and emotion in healthy human adults,” Psychoneuroendocrinology, 24, No. 4, 461– 483 (1999), https://doi.org/10.1016/s0306-4530(99)00007-4.

    Article  Google Scholar 

  165. L. A. Schmidt, N. A. Fox, K. Perez-Edgar, and D. H. Hamer, “Linking gene, brain, and behavior: DRD4, frontal asymmetry, and temperament,” Psychol. Sci., 20, No. 7, 831–837 (2009), https://doi.org/10.1111/j.1467-9280.2009.02374.x.

    Article  Google Scholar 

  166. L. A. Schmidt and V. Miskovic, “A new perspective on temperamental shyness: differential susceptibility to endoenvironmental influences,” Soc. Pers. Psychol. Compass, 7, No. 3, 141–157 (2013), https://doi.org/10.1111/spc3.12014.

    Article  Google Scholar 

  167. M. Schneider, L. Chau, M. Mohamadpour, et al., “EEG asymmetry and BIS/BAS among healthy adolescents,” Biol. Psychol., 120, 142–148 (2016), https://doi.org/10.1016/j.biopsycho.2016.09.004.

    Article  Google Scholar 

  168. A. J. Shackman, B. W. McMenamin, J. S. Maxwell, et al., “Identifying robust and sensitive frequency bands for interrogating neural oscillations,” NeuroImage, 51, 1319–1333 (2010), https://doi.org/10.1016/j.neuroimage.2010.03.037.

    Article  Google Scholar 

  169. G. S. Shields and W. G. Moons, “Avoidance-related EEG asymmetry predicts circulating interleukin-6,” Emotion, 16, No. 2, 150–154 (2016), https://doi.org/10.1037/emo0000120.

    Article  Google Scholar 

  170. E. K. Silberman and H. Weingartner, “Hemispheric lateralization of functions related to emotion,” Brain Cogn., 5, No. 3, 322–353 (1986), https://doi.org/10.1016/0278-2626(86)90035-7.

    Article  Google Scholar 

  171. L. D. Smillie, A. D. Pickering, and C. J. Jackson, “The new reinforcement sensitivity theory: implications for personality measurement,” Pers. Soc. Psychol. Rev., 10, No. 4, 320–335 (2006), https://doi.org/10.1207/s15327957pspr1004_3.

    Article  Google Scholar 

  172. D. J. Smit, D. Posthuma, D. I. Boomsma, and E. J. De Geus, “The relation between frontal EEG asymmetry and the risk for anxiety and depression,” Biol. Psychol., 74, No. 1, 26–33 (2007), https://doi.org/10.1016/j.biopsycho.2006.06.002.

    Article  Google Scholar 

  173. E. E. Smith, S. J. Reznik, J. L. Stewart, and J. J. Allen, “Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry,” Int. J. Psychophysiol., 111, 98–114 (2017), https://doi.org/10.1016/j.ijpsycho.2016.11.005.

    Article  Google Scholar 

  174. S. Solís-Ortiz, J. Ramos, C. Arce, et al., “EEG oscillations during menstrual cycle,” Int. J. Neurosci., 76, No. 3–4, 279–292 (1994), https://doi.org/10.3109/00207459408986010.

    Article  Google Scholar 

  175. J. M. Spielberg, J. L. Stewart, R. L. Levin, et al., “Prefrontal cortex, emotion, and approach/withdrawal motivation,” Soc. Pers. Psychol. Compass, 2, No. 1, 135–153 (2008), https://doi.org/10.1111/j.1751-9004.2007.00064.x.

    Article  Google Scholar 

  176. G. Stemmler and J. Wacker, “Personality, emotion, and individual differences in physiological responses,” Biol. Psychol., 84, No. 3, 541–551 (2010), https://doi.org/10.1016/j.biopsycho.2009.09.012.

    Article  Google Scholar 

  177. M. Stikic, R. R. Johnson, V. Tan, and C. Berka, “EEG-based classification of positive and negative affective states,” Brain-Comp. Interf., 1, No. 2 (2014), https://doi.org/10.1080/2326263X.2014.912883.

  178. R. M. Sullivan and A. Gratton, “Relationships between stress-induced increases in medial prefrontal cortical dopamine and plasma corticosterone levels in rats: role of cerebral laterality,” Neuroscience, 83, No. 1, 81–91 (1998), https://doi.org/10.1016/s0306-4522(97)00370-9.

    Article  Google Scholar 

  179. S. K. Sutton and R. J. Davidson, “Prefrontal brain electrical asymmetry predicts the evaluation of affective stimuli,” Neuropsychologia, 38, No. 13, 1723–1733 (2000), https://doi.org/10.1016/s0028-3932(00)00076-2.

    Article  Google Scholar 

  180. A. Telpaz and E. Yechiam, “Contrasting losses and gains increases the predictability of behavior by frontal EEG asymmetry,” Front. Behav. Neurosci., 8, e149 (2014), https://doi.org/10.3389/fnbeh.2014.00149.

    Article  Google Scholar 

  181. A. J. Tomarken, R. J. Davidson, R. E. Wheeler, and R. C. Doss, “Individual differences in anterior brain asymmetry and fundamental dimensions of emotion,” J. Pers. Soc. Psychol., 62, No. 4, 676–687 (1992), https://doi.org/10.1037//0022-3514.62.4.676.

    Article  Google Scholar 

  182. A. J. Tomarken, R. J. Davidson, R. E. Wheeler, and L. Kinney, “Psychometric properties of resting anterior EEG asymmetry: temporal stability and internal consistency,” Psychophysiology, 29, No. 5, 576–592 (1992), https://doi.org/10.1111/j.1469-8986.1992.tb02034.x.

    Article  Google Scholar 

  183. M. Tops, M. Quirin, M. A. S. Boksem, and S. L. Koole, “Large-scale neural networks and the lateralization of motivation and emotion,” Int. J. Psychophysiol., 119, 41–49 (2017), https://doi.org/10.1016/j.ijpsycho.2017.02.004.

    Article  Google Scholar 

  184. M. Tops, J. M. van Peer, A. E. Wester, et al., “State-dependent regulation of cortical activity by cortisol: An EEG study,” Neurosci. Lett., 404, No. 1–2, 39–43 (2006), https://doi.org/10.1016/j.neulet.2006.05.038.

    Article  Google Scholar 

  185. M. Tops, A. A. Wijers, A. S. van Staveren, et al., “Acute cortisol administration modulates EEG alpha asymmetry in volunteers: relevance to depression,” Biol. Psychol., 69, No. 2, 181–193 (2005), https://doi.org/10.1016/j.biopsycho.2004.07.005.

    Article  Google Scholar 

  186. D. N. Towers and J. J. Allen, “A better estimate of the internal consistency reliability of frontal EEG asymmetry scores,” Psychophysiology, 46, No. 1, 132–142 (2009), https://doi.org/10.1111/j.1469-8986.2008.00759.x.

    Article  Google Scholar 

  187. D. M. Tucker, “Lateral brain function, emotion, and conceptualization,” Psychol. Bull., 89, No. 1, 19–46 (1981), https://doi.org/10.1037/0033-2909.89.1.19.

    Article  Google Scholar 

  188. G. Vallortigara and L. J. Rogers, “Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization,” Behav. Brain Sci., 28, No. 4, 575–589 (2005), https://doi.org/10.1017/S0140525X05000105.

    Article  Google Scholar 

  189. J. R. Velo, J. L. Stewart, B. P. Hasler, et al., “Should it matter when we record? Time of year and time of day as factors infl uencing frontal EEG asymmetry,” Biol. Psychol., 91, No. 2, 283–291 (2012), https://doi.org/10.1016/j.biopsycho.2012.06.010.

    Article  Google Scholar 

  190. M. Vuga, N. A. Fox, J. F. Cohn, et al., “Long-term stability of electroencephalographic asymmetry and power in 3 to 9 year-old children,” Int. J. Psychophysiol., 67, No. 1, 70–77 (2008), https://doi.org/10.1016/j.ijpsycho.2007.10.007.

    Article  Google Scholar 

  191. J. Wacker, “Effects of positive emotion, extraversion, and dopamine on cognitive stability-flexibility and frontal EEG asymmetry,” Psychophysiology, 55, No. 1 (2018), https://doi.org/10.1111/psyp.12727.

  192. J. Wacker, M. L. Chavanon, A. Leue, and G. Stemmler, “Is running away right? The behavioral activation-behavioral inhibition model of anterior asymmetry,” Emotion, 8, No. 2, 232–249 (2008), https://doi.org/10.1037/1528-3542.8.2.232.

    Article  Google Scholar 

  193. J. Wacker, M. Heldmann, and G. Stemmler, “Separating emotion and motivational direction in fear and anger: effects on frontal asymmetry,” Emotion, 3, No. 2, 167–193 (2003), https://doi.org/10.1037/1528-3542.3.2.167.

    Article  Google Scholar 

  194. J. Wacker, E. M. Mueller, D. A. Pizzagalli, et al., “Dopamine-d2-receptor blockade reverses the association between trait approach motivation and frontal asymmetry in an approach-motivation context,” Psychol. Sci., 24, No. 4, 489–497 (2013), https://doi.org/10.1177/0956797612458935.

    Article  Google Scholar 

  195. Y. Wang, J. Lu, C. Gu, and B. Hu, “Mapping the frontal alpha asymmetry indicators of habitual emotion regulation: a data-driven approach,” Neuroreport, 29, No. 15, 1288–1292 (2018), https://doi.org/10.1097/WNR.0000000000001109.

    Article  Google Scholar 

  196. D. Watson, “Locating anger in the hierarchical structure of affect: comment on Carver and Harmon-Jones (2009),” Psychol. Bull., 135, No. 2, 205–208 (2009), https://doi.org/10.1037/a0014413.

    Article  Google Scholar 

  197. D. Watson, D. Wiese, J. Vaidya, and A. Tellegen, “The two general activation systems of affect: Structural fi ndings, evolutionary considerations, and psychobiological evidence,” J. Pers. Soc. Psychol., 76, No. 5, 820–838 (1999), https://doi.org/10.1037/0022-3514.76.5.820.

    Article  Google Scholar 

  198. B. M. Wilkowski and B. P. Meier, “Bring it on: angry facial expressions potentiate approach-motivated motor behavior,” J. Pers. Soc. Psychol., 98, No. 2, 201–210 (2010), https://doi.org/10.1037/a0017992.

    Article  Google Scholar 

  199. A. K. Winegust, K. J. Mathewson, and L. A. Schmidt, “Test-retest reliability of frontal alpha electroencephalogram (EEG) and electrocardiogram (ECG) measures in adolescents: a pilot study,” Int. J. Neurosci., 124, No. 12, 908–911 (2014), https://doi.org/10.3109/00207454.2014.895003.

    Article  Google Scholar 

  200. W. Wittling and M. Pflüger, “Neuroendocrine hemisphere asymmetries: salivary cortisol secretion during lateralized viewing of emotion-related and neutral fi lms,” Brain Cogn., 14, No. 2, 243–265 (1990), https://doi.org/10.1016/0278-2626(90)90032-j.

    Article  Google Scholar 

  201. M. Wyczesany, P. Capotosto, F. Zappasodi, and G. Prete, “Hemispheric asymmetries and emotions: Evidence from effective connectivity,” Neuropsychologia, 121, 98–105 (2018), https://doi.org/10.1016/j.neuropsychologia.2018.10.007.

    Article  Google Scholar 

  202. X. Zhang, P. Bachmann, and T. M. Schilling, et al., “Emotional stress regulation: The role of relative frontal alpha asymmetry in shaping the stress response,” Biol. Psychol., 138, 231–239 (2018), https://doi.org/10.1016/j.biopsycho.2018.08.007.

    Article  Google Scholar 

  203. L. R. Zinner, A. B. Brodish, P. G. Devine, and E. Harmon-Jones, “Anger and asymmetrical frontal cortical activity: Evidence for an anger-withdrawal relationship,” Cogn. Emot., 22, No. 6, 1081–1093 (2008), https://doi.org/10.1080/02699930701622961.

    Article  Google Scholar 

  204. nV. Zotev, H. Yuan, M. Misaki, et al., “Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression,” Neuroimage Clin., 11, 224–238 (2016), https://doi.org/10.1016/j.nicl.2016.02.003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ye. Mel’nikov.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 52, No. 3, pp. 56–80, July–September, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mel’nikov, M.Y. One Phenomenon with Many Interpretations: Asymmetry of the Frontal EEG α Rhythm in Healthy People. Part I. Neurosci Behav Physi 52, 1107–1126 (2022). https://doi.org/10.1007/s11055-022-01338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01338-9

Navigation