Skip to main content
Log in

Neurotechnologies for the Nonpharmacological Treatment of Sleep Disorders

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Sleep is needed for maintenance of normal homeostasis and memory consolidation processes and the deep third stage of sleep plays a particularly important role. However, a significant proportion of the population suffers from poor sleep quality, insomnia, and problems with going to sleep. Pharmacological treatment of these problems is not always possible or appropriate, and in recent years we have seen increasing interest in nonpharmacological methods of influencing falling asleep and sleep. This review addresses various approaches to improving sleep quality and accelerating going to sleep: sensory actions of different modalities, approaches using transcranial stimulation, and normalization of daily sleep–waking rhythms. This article considers their main possible mechanisms of action. Nonpharmacological treatments most commonly produce increases in slow-wave activity in the third stage of sleep. The areas of application of different approaches are assessed: from exclusively research purposes to application in clinical practice and use in consumer devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeln, V., Kleinert, J., Strüder, H. K., and Schneider, S., “Brainwave entrainment for better sleep and post-sleep state of young elite soccer players – A pilot study,” Eur. J. Sport Sci., 14, No. 5, 393–402 (2014).

    Article  Google Scholar 

  • Achermann, P. and Borbely, A. A., “Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram,” Neurosci., 81, No. 1, 213– 222 (1997).

    Article  Google Scholar 

  • Annarumma, L., D’Atri, A., Alfonsi, V., and De Gennaro, L., “The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness,” Brain Sci., 8, No. 7, 137 (2018).

  • Arbon, E. L., Knurowska, M., and Dijk, D.-J., “Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people,” J. Psychopharmacol., 29, No. 7, 764–776 (2015).

    Article  Google Scholar 

  • Arnal, P. J., El Kanbi, K., Debellemaniere, E., et al., “Auditory closed-loop stimulation to enhance sleep quality,” J. Sci. Med. Sport., 20, S95 (2017).

    Article  Google Scholar 

  • Arnal, P. J., Thorey, V., Debellemaniere, E., et al., “The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging,” Sleep, 43, No. 11, 1–13 (2020).

    Article  Google Scholar 

  • Ashida, K., Morita, Y., Ikeura, R., et al., “Effective rocking motion for inducing sleep in adults – Verification of effect of mothers embrace and rocking motion,” J. Robot. Netw. Artif. Life, 1, No. 4, 285 (2015).

  • Bakaeva, Z. V., Shumov, D. E., Yakunina, E. B., et al., “Infl uences of music with the binaural beat effect on human heart rate parameters during daytime sleep processes,” Zh. Nevrol. Psikhiatr., Spec. Iss., 121, No. 4–2, 31–35 (2021).

    Article  Google Scholar 

  • Barratt, E. L. and Davis, N. J., “Autonomous sensory meridian response (ASMR, a flow-like mental state,” PeerJ, 3, e851 (2015).

  • Bayer, L., Constantinescu, I., Perrig, S., et al., “Rocking synchronizes brain waves during a short nap,” Curr. Biol., 21, No. 12, R461–R462 (2011).

    Article  Google Scholar 

  • Beck, J., Loretz, E., and Rasch, B., “Exposure to relaxing words during sleep promotes slow-wave sleep and subjective sleep quality,” Sleep, 2021, 2020.12.16.423012.

  • Bellesi, M., Riedner, B. A., Garcia-Molina, G. N., et al., “Enhancement of sleep slow waves: underlying mechanisms and practical consequences,” Front. Syst. Neurosci., No. 8, 208 (2014).

  • Bertisch, S. M., Wells, R. E., Smith, M. T., and McCarthy, E. P., “Use of relaxation techniques and complementary and alternative medicine by American adults with insomnia symptoms: results from a national survey,” J. Clin. Sleep Med., 8, No. 6, 681–691 (2012).

    Article  Google Scholar 

  • Besedovsky, L., Ngo, H.-V. V., Dimitrov, S., et al., “Auditory closed-loop stimulation of EEG slow oscillations strengthens sleep and signs of its immune-supportive function,” Nat. Commun., 8, No. 1, 1984 (2017).

  • Bingi, B. N., Principles of Electromagnetic Physics, Fizmatlit, Moscow (2011).

    Google Scholar 

  • Bliss, V. L. and Heppner, F. H., “Circadian activity rhythm infl uenced by near zero magnetic fi eld,” Nature, 261, No. 5559, 411–412 (1976).

    Article  Google Scholar 

  • Blume, C., del Giudice, R., Wislowska, M., et al., “Standing sentinel during human sleep: Continued evaluation of environmental stimuli in the absence of consciousness,” NeuroImage, 178, 638–648 (2018).

    Article  Google Scholar 

  • Borbély, A. A., Daan, S., Wirz-Justice, A., and Deboer, T., “The two-process model of sleep regulation: A reappraisal,” J. Sleep Res., 25, No. 2, 131–143 (2016).

    Article  Google Scholar 

  • Breus, T. K., Effects of Solar Activity on Biological Objects: Thesis for the Degree of Doctor of Physical and Mathematical Sciences, Moscow (2003).

  • Brunborg, G. S., Mentzoni, R. A., Molde, H., et al., “The relationship between media use in the bedroom, sleep habits and symptoms of insomnia,” J. Sleep Res., 20, No. 4, 569–575 (2011).

    Article  Google Scholar 

  • Burenina, I. A., “Main methodological principles of the use of aromatherapy in restorative therapy,” Vestn. Sovremen. Klin. Med., 2, No. 2, 47–50 (2009).

    Google Scholar 

  • Cain, S. W., McGlashan, E. M., Vidafar, P., et al., “Evening home lighting adversely impacts the circadian system and sleep,” Sci. Rep., 10, No. 1, 19110 (2020).

  • Cellini, N. and Mednick, S. C., “Stimulating the sleeping brain: Current approaches to modulating memory-related sleep physiology,” J. Neurosci. Meth., 316, 125–136 (2019).

    Article  Google Scholar 

  • Cheong, M. J., Kim, S., Kim, J. S., et al., “A systematic literature review and meta-analysis of the clinical effects of aroma inhalation therapy on sleep problems,” Medicine (Baltimore), 100, No. 9, e24652 (2021).

  • Choi, J., Han, S., Won, K., and Jun, S. C., “The neurophysiological effect of acoustic stimulation with real-times sleep spindle detection,” Proc. Annu. Int. Con. IEEE Eng. Med. Biol. Soc., EMBS, July 2018 (2018), pp. 470–473.

  • Choi, J., Won, K., and Jun, S. C., “Acoustic stimulation following sleep spindle activity may enhance procedural memory consolidation during a nap,” IEEE Access, 7, 56297–56307 (2019).

    Article  Google Scholar 

  • Copinschi, G., Leproult, R., and Spiegel, K., The Important Role of Sleep in Metabolism. How Gut and Brain Control Metabolism, S. Karger AG, Basel (2014), pp. 59–72.

  • Crivelli, F., Omlin, X., Rauter, G., et al., “Somnomat: a novel actuated bed to investigate the effect of vestibular stimulation,” Med. Biol. Eng. Comput., 54, No. 6, 877–89 (2016).

    Article  Google Scholar 

  • Dang-Vu, T. T., Bonjean, M., Schabus, M., et al., “Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep,” Proc. Natl. Acad. Sci. USA, 108, No. 37, 15438–43 (2011).

    Article  Google Scholar 

  • Danilenko, K. V., Kobelev, E., Yarosh, S. V., et al., “Effectiveness of visual vs. acoustic closed-loop stimulation on EEG power density during NREM sleep in humans,” Clocks Sleep, 2, No. 2, 172–181 (2020).

    Article  Google Scholar 

  • De Niet, G., Tiemens, B., Lendemeijer, B., and Hutschemaekers, G., “Music-assisted relaxation to improve sleep quality: Meta-analysis,” J. Adv. Nurs., 65, No. 7, 1356–1364 (2009).

    Article  Google Scholar 

  • Debellemaniere, E., Chambon, S., Pinaud, C., et al., “Performance of an ambulatory dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment,” Front. Hum. Neurosci., 12, 88 (2018).

    Article  Google Scholar 

  • Diekelmann, S., “Sleep for cognitive enhancement,” Front. Syst. Neurosci., 8, 46 (2014).

    Article  Google Scholar 

  • Dorokhov, V. B., “Somnology and work safety,” Zh. Vyssh. Nerv. Deyat., 63, No. 1, 33–47 (2013).

    Google Scholar 

  • Dorokhov, V. B., Taranov, A. I., Narbut, A. M., et al., “Effects of exposure to a weak extremely low frequency electromagnetic fi eld on daytime sleep architecture and length,” Sleep Med. Res., 10, No. 2, 97–102 (2019).

    Article  Google Scholar 

  • Dorokhov, V. B., Taranov, A. O., Sakharov, D. S., et al., “Effects of exposures to weak 2-Hz vs. 8-Hz electromagnetic fields on spectral characteristics of the electroencephalogram in afternoon nap,” Biol. Rhythm Res., 55, No. 7, 1–9 (2022).

    Google Scholar 

  • Dorokhov, V. B., Ukraintseva, Yu. V., Arsen’ev, G. N., et al., “Habituation of somatosensory event-related potentials in subthreshold rhythmic (1 Hz) electrical stimulation of the hand during the slow-wave of daytime sleep,” Ros. Fiziol. Zh., 103, No. 5, 518–526 (2017).

    Google Scholar 

  • Fattinger, S., de Beukelaar, T. T., Ruddy, K. L., et al., “Deep sleep maintains learning efficiency of the human brain,” Nat. Commun., 8, No. 1, 15405 (2017).

  • Gammack, J. K., “Light therapy for insomnia in older adults,” Clin. Geriatr. Med., 24, No. 1, 139–149 (2008).

    Article  Google Scholar 

  • Garcia-Molina, G., Tsoneva, T., Jasko, J., et al., “Closed-loop system to enhance slow-wave activity,” J. Neural Eng., 15, No. 6, 066018 (2018).

  • Garcia-Molina, G., Tsoneva, T., Neff, A., et al., “Hybrid in-phase and continuous auditory stimulation signifi cantly enhances slow wave activity during sleep,” Proc. Annu. Int. Con. IEEE Eng. Med. Biol. Soc., EMBS (2019), pp. 4052–4055.

  • Golrou, A., Sheikhani, A., Motie Nasrabadi, A., and Saebipour, M. R., “Enhancement of sleep quality and stability using acoustic stimulation during slow wave sleep,” Int. Clin. Neurosci. J., 5, No. 4, 126– 134 (2018).

    Article  Google Scholar 

  • Gorelkin, A. G., “Electrophysiological properties of human peripheral tissues with geomagnetic screening. Electromagnetic fi elds and human health,” in: Electromagnetic Fields and Human Health, RUDN Press, Moscow (1999), pp. 31–32.

  • Gorgoni, M., D’Atri, A., Scarpelli, S., et al., “The electroencephalographic features of the sleep onset process and their experimental manipulation with sleep deprivation and transcranial electrical stimulation protocols,” Neurosci. Biobehav. Rev., 114, 25–37 (2020).

    Article  Google Scholar 

  • Grabherr, L., Macauda, G., and Lenggenhager, B., “The moving history of vestibular stimulation as a therapeutic intervention,” Multisens. Res., 28, No. 5–6, 653–687 (2015).

    Article  Google Scholar 

  • Grimaldi, D., Papalambros, N. A., Reid, K. J., et al., “Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations,” Sleep, 42, No. 5, zsz036 (2019).

  • Grimaldi, D., Papalambros, N. A., Zee, P. C., and Malkani, R. G., “Neurostimulation techniques to enhance sleep and improve cognition in aging,” Neurobiol. Dis., 141, 104865 (2020).

    Article  Google Scholar 

  • Guerrien, A., Dujardin, K., Mandal, O., et al., “Enhancement of memory by auditory stimulation during postlearning REM sleep in humans,” Physiol. Behav., 45, No. 5, 947–950 (1989).

    Article  Google Scholar 

  • Guleyupoglu, B., Schestatsky, P., Edwards, D., et al., “Classifi cation of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations,” J. Neurosci. Meth., 219, No. 9, 297–311 (2013).

    Article  Google Scholar 

  • Gulyaev, Yu. V., Bugaev, A. S., Indurskii, P. A., et al., “Improvements in nocturnal sleep quality using subthreshold electrical stimulation synchronized with slow-wave phases,” Dokl. Akad. Nauk., No. 6, 770 (2017).

  • Harrington, M. O., Ashton, J. E., Ngo, H.-V. V., and Cairney, S. A., “Phaselocked auditory stimulation of theta oscillations during rapid eye movement sleep,” Sleep, 9, 44, zsaa227 (2021).

  • Henao, D., Navarrete, M., Valderrama, M., and Le Van Quyen, M., “Entrainment and synchronization of brain oscillations to auditory stimulations,” Neurosci. Res., 156, 271–278 (2020).

    Article  Google Scholar 

  • Herrero Babiloni, A., Bellemare, A., Beetz, G., et al., “The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review,” Sleep Med. Rev., 55, 101381 (2021).

    Article  Google Scholar 

  • Hu, B., “Functional organization of lemniscal and nonlemniscal auditory thalamus,” Exp. Brain Res., 153, No. 4, 543–549 (2003).

    Article  Google Scholar 

  • Indurskii, P. A., Markelov, V. V., Shakhnarovich, V. M., and Dorokhov, V. B., “Low-frequency electrical stimulation of the wrist during the slowwave phase of nocturnal sleep: physiological and therapeutic effects,” Fiziol. Cheloveka, 39, No. 6, 91–105 (2013).

    Google Scholar 

  • Irish, L. A., Kline, C. E., Gunn, H. E., et al., “The role of sleep hygiene in promoting public health: A review of empirical evidence,” Sleep Med. Rev., 22, 23–36 (2015).

    Article  Google Scholar 

  • Jerath, R., Beveridge, C., and Barnes, V. A., “Self-regulation of breathing as an adjunctive treatment of insomnia,” Front. Psychiatry, 9, 780 (2019).

    Article  Google Scholar 

  • Jirakittayakorn, N. and Wongsawat, Y., “A novel insight of effects of a 3-Hz binaural beat on sleep stages during sleep,” Front. Hum. Neurosci., 12, 387 (2018).

    Article  Google Scholar 

  • Khabarova, O. V., “Bioaffective frequencies and their links with the intrinsic frequencies of living organisms,” Biomed. Tekhnol. Radioelektr., 5, 56–66 (2002).

    Google Scholar 

  • Kompotis, K., Hubbard, J., Emmenegger, Y., et al., “Rocking promotes sleep in mice through rhythmic stimulation of the vestibular system,” Curr. Biol., 29, No. 3, 392–401.e4 (2019).

    Article  Google Scholar 

  • Kouider, S., Andrillon, T., Barbosa, L. S., et al., “Inducing task-relevant responses to speech in the sleeping brain,” Curr. Biol., 24, No. 18, 2208–2214 (2014).

    Article  Google Scholar 

  • Koval’zon, V. M., Basic Somnology. The Physiology and Neurochemistry of the Sleep–Waking Cycle, Binom. Knowledge Laboratory, Moscow (2011).

  • Krugliakova, E., Volk, C., Jaramillo, V., et al., “Changes in cross-frequency coupling following closed-loop auditory stimulation in non-rapid eye movement sleep,” Sci. Rep., 10, No. 1, 10628 (2020).

  • Krystal, A. D., Zammit, G. K., Wyatt, J. K., et al., “The effect of vestibular stimulation in a four-hour sleep phase advance model of transient insomnia,” J. Clin. Sleep Med., 06, No. 04, 315–321 (2010).

    Article  Google Scholar 

  • Kudryashov, Yu. B. and Rubin, A. B., Radiation Biophysics: Ultra Low Frequency Electromagnetic Radiation, Fizmatlit, Moscow (2014).

    Google Scholar 

  • Kumar Goothy, S. S. and McKeown, J., “Modulation of sleep using electrical vestibular nerve stimulation prior to sleep onset: A pilot study,” J. Basic Clin. Physiol. Pharmacol., 32, No. 2, 19–23 (2021).

    Article  Google Scholar 

  • Kuula, L., Halonen, R., Kajanto, K., et al., “The effects of presleep slow breathing and music listening on polysomnographic sleep measures – a pilot trial,” Sci. Rep., 10, No. 1, 7427 (2020).

  • Lee, M., Song, C.-B., Shin, G.-H., and Lee, S.-W., “Possible effect of binaural beat combined with autonomous sensory meridian response for inducing sleep,” Front. Hum. Neurosci., 13, 425 (2019).

    Article  Google Scholar 

  • Lefaucheur, J. P., André-Obadia, N., Antal, A., et al., “Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS),” Clin. Neurophysiol., 125, No. 11, 2150–2206 (2014).

    Article  Google Scholar 

  • Lefaucheur, J. P., Antal, A., Ayache, S. S., et al., “Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS),” Clin. Neurophysiol., 128, No. 1, 56–92 (2017).

    Article  Google Scholar 

  • Leminen, M. M., Virkkala, J., Saure, E., et al., “Enhanced memory consolidation via automatic sound stimulation during non-REM sleep,” Sleep, 40, No. 3, zsx003 (2017).

  • Lillehei, A. S. and Halcon, L. L., “A systematic review of the effect of inhaled essential oils on sleep,” J. Altern. Complement. Med., 20, No. 6, 441–51 (2014).

    Article  Google Scholar 

  • Lustenberger, C., Patel, Y. A., Alagapan, S., et al., “High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep,” NeuroImage, 169, 57–68 (2018).

    Article  Google Scholar 

  • Malkani, R. G. and Zee, P. C., “Brain stimulation for improving sleep and memory,” Sleep Med. Clin., 15, No. 1, 101–115 (2020).

    Article  Google Scholar 

  • Marshall, L., Cross, N., Binder, S., and Dang-Vu, T. T., “Brain rhythms during sleep and memory consolidation: Neurobiological insights,” Physiology (Bethesda), 35, No. 1, 4–15 (2020).

    Google Scholar 

  • McArdle, N., Devereux, G., Heidarnejad, H., et al., “Long-term use of CPAP therapy for sleep apnea/hypopnea syndrome,” Am. J. Respir. Crit. Care Med., 159, No. 4, 1108–1114 (1999).

    Article  Google Scholar 

  • Ngo, H. V. V., Miedema, A., Faude, I., et al., “Driving sleep slow oscillations by auditory closed-loop stimulation–A self-limiting process,” J. Neurosci., 35, No. 17, 6630–6638 (2015).

    Article  Google Scholar 

  • Ngo, H. V., V., Claussen, J. C., Born, J., and Mölle, M., “Induction of slow oscillations by rhythmic acoustic stimulation,” J. Sleep Res., 22, No. 1, 22–31 (2013a).

  • Ngo, H.-V. V., Martinetz, T., Born, J., and Mölle, M., “Auditory closedloop stimulation of the sleep slow oscillation enhances memory,” Neuron, 78, No. 3, 545–553 (2013b).

    Article  Google Scholar 

  • Ngo, H.-V. V., Seibold, M., Boche, D. C., et al., “Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states,” J. Neurosci. Meth., 316, 117–124 (2019).

    Article  Google Scholar 

  • Nicolini, A., Banfi, P., Grecchi, B., et al., “Non-invasive ventilation in the treatment of sleep-related breathing disorders: A review and update,” Rev. Port. Pneumol., 20, No. 6, 324–335 (2014).

    Article  Google Scholar 

  • Ohayon, M. M., Stolc, V., Freund, F. T., et al., “The potential for impact of man-made super low and extremely low frequency electromagnetic fields on sleep,” Sleep Med. Rev., 47, 28–38 (2019).

    Article  Google Scholar 

  • Omlin, X., Crivelli, F., Näf, M., et al., “The effect of a slowly rocking bed on sleep,” Sci. Rep., 8, No. 1, 2156 (2018).

  • Ong, J. L., Lo, J. C., Chee, N. I. Y. N. Y. N., et al., “Effects of phase-locked acoustic stimulation during a nap on EEG spectra and declarative memory consolidation,” Sleep Med., 20, 88–97 (2016).

    Article  Google Scholar 

  • Orozco Perez, H. D., Dumas, G., and Lehmann, A., “Binaural beats through the auditory pathway: from brainstem to connectivity patterns,” eNeuro, 7, No. 2, ENEURO.0232-19.2020 (2020).

  • Ostrin, L. A., Abbott, K. S., and Queener, H. M., “Attenuation of short wavelengths alters sleep and the ipRGC pupil response,” Ophthalmic Physiol. Opt., 37, No. 4, 440–450 (2017).

    Article  Google Scholar 

  • Öztürk-Çolak, A., Inami, S., Buchler, J. R., et al., “Sleep induction by mechanosensory stimulation in Drosophila,” Cell Rep., 33, No. 9, 108462 (2020).

  • Papalambros, N. A., Santostasi, G., Malkani, R. G., et al., “Acoustic enhancement of sleep slow oscillations and concomitant memory improvement in older adults,” Front. Hum. Neurosci., 11, 109 (2017).

    Article  Google Scholar 

  • Papalambros, N. A., Weintraub, S., Chen, T., et al., “Acoustic enhancement of sleep slow oscillations in mild cognitive impairment,” Ann. Clin. Transl. Neurol., 6, No. 7, 1191–1201 (2019).

    Article  Google Scholar 

  • Pelka, R. B., Jaenicke, C., and Gruenwald, J., “Impulse magnetic-field therapy for insomnia: A double-blind, placebo-controlled study,” Adv. Ther., 18, No. 4, 174–180 (2001).

    Article  Google Scholar 

  • Perrault, A. A., Khani, A., Quairiaux, C., et al., “Whole-night continuous rocking entrains spontaneous neural oscillations with benefits for sleep and memory,” Curr. Biol., 29, No. 3, 402–411.e3 (2019).

    Article  Google Scholar 

  • Pobachenko, S. V., Kolesnik, A. G., Borodin, A. S., and Kalyuzhin, V. V., “The contingency of parameters of human encephalograms and Schumann resonance electromagnetic fi elds revealed in monitoring studies,” Biophysics, 51, No. 3, 480–483 (2006).

    Article  Google Scholar 

  • Poluektov, M. G. (ed.), Somnology and Sleep Medicine: National Guidelines in Memory of A. M. Vein and Ya. I. Levin, Medkongress, Moscow (2016).

  • Prehn-Kristensen, A., Ngo, H. V. V., Lentfer, L., et al., “Acoustic closedloop stimulation during Sleep improves consolidation of reward-related memory information in healthy children but not in children with attention-defi cit hyperactivity disorder,” Sleep, 43, No. 8, zsaa017 (2020).

  • Presman, A. S., Electromagnetic Fields and Living Nature, Nauka, Moscow (1968).

    Google Scholar 

  • Pudikov, I. V. and Dorokhov, V. B., Phototheray. Brief Guidelines for Clinical

  • Somnology, Kovrov, G. V. (ed.), MEDpress-inform, Moscow (2018), pp. 215–222.

  • Putilov, A. A., “Quo vadis chronopsychology?” Zh. Vyssh. Nerv. Deyat., 71, No. 2, 244–269 (2021).

    Google Scholar 

  • Raymann, R. J. E. M., Swaab, D. F., and Van Someren, E. J. W., “Cutaneous warming promotes sleep onset,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, No. 6, R1589–R1597 (2005).

    Article  Google Scholar 

  • Raymann, R. J. E. M., Swaab, D. F., and Van Someren, E. J. W., “Skin deep: enhanced sleep depth by cutaneous temperature manipulation,” Brain, 131, No. 2, 500–513 (2008).

    Article  Google Scholar 

  • Roach, G. D. and Sargent, C., “Interventions to minimize jet lag after westward and eastward flight,” Front. Physiol., 10, 927 (2019).

    Article  Google Scholar 

  • Robinovitch, L. G., “Electrical analgesia, sleep and resuscitation,” in: Anesthesia (1914), p. 478.

    Google Scholar 

  • Rogers, N. L., Bowes, J., Lushington, K., and Dawson, D., “Thermoregulatory changes around the time of sleep onset,” Physiol. Behav., 90, No. 4, 643–647 (2007).

    Article  Google Scholar 

  • Romanella, S. M., Roe, D., Paciorek, R., et al., “Sleep, noninvasive brain stimulation, and the aging brain: challenges and opportunities,” Ageing Res. Rev., 61, 101067 (2020).

    Article  Google Scholar 

  • Rzeczinski, S., Janson, N. B., Balanov, A. G., and McClintock, P. V., “Regions of cardiorespiratory synchronization in humans under paced respiration,” Phys. Rev. E, 66, 051909 (2002).

    Article  Google Scholar 

  • Salfi, F., D’Atri, A., Tempesta, D., et al., “Boosting slow oscillations during sleep to improve memory function in elderly people: A review of the literature,” Brain Sci., 10, No. 5, 300 (2020).

  • Salin-Pascual, R. J., Granados-Fuentes, D., de la Fuente, J. R., and Drucker-Colin, R., “Effects of auditory stimulation during rapid eye movement sleep in healthy volunteers and depressed patients,” Psychiatry Res., 38, No. 3, 237–246 (1991).

    Article  Google Scholar 

  • Santamaria, J. and Chiappa, K. H., “The EEG of drowsiness in normal adults,” J. Clin. Neurophysiol., 4, No. 4, 327–382 (1987).

    Article  Google Scholar 

  • Santiago, J. C. P., Ngo, H.-V., Jickeli, C., et al., “Intensifying sleep slow oscillations does not improve metabolic control in healthy men,” Psychoneuroendocrinology, 99, 1–7 (2019).

    Article  Google Scholar 

  • Santostasi, G., Malkani, R., Riedner, B., et al., “Phase-locked loop for precisely timed acoustic stimulation during sleep,” J. Neurosci. Meth., 259, 101–114 (2016).

    Article  Google Scholar 

  • Saroka, K. S., Vares, D. E., and Persinger, M. A., “Similar spectral power densities within the schumann resonance and a large population of quantitative electroencephalographic profi les: supportive evidence for Koenig and Pobachenko,” PLoS One, 11, No. 1, e0146595 (2016).

  • Schabus, M., Dang-Vu, T. T., Heib, D. P. J., et al., “The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation,” Front. Neurol., 3, 40 (2012).

    Article  Google Scholar 

  • Schade, M. M., Mathew, G. M., Roberts, D. M., et al., “Enhancing slow oscillations and increasing N3 sleep proportion with supervised, non-phase-locked pink noise and other non-standard auditory stimulation during NREM sleep,” Nat. Sci. Sleep, 12, 411–429 (2020).

    Article  Google Scholar 

  • Schneider, J., Lewis, P. A., Koester, D., et al., “Susceptibility to auditory closed-loop stimulation of Sleep slow oscillations changes with age,” Sleep, 43, No. 12, zsaa111 (2020).

  • Schroeck, J. L., Ford, J., Conway, E. L., et al., “Review of safety and efficacy of sleep medicines in older adults,” Clin. Ther., 38, No. 11, 2340–2372 (2016).

    Article  Google Scholar 

  • Shechter, A., Quispe, K. A., Mizhquiri Barbecho, J. S., et al., “Interventions to reduce short-wavelength (‘blue’) light exposure at night and their effects on sleep: A systematic review and meta-analysis,” Sleep Adv., 1, No. 1, zpaa002 (2020).

  • Shibagaki, H., Ashida, K., Morita, Y., et al., “Verifying the sleep-inducing effect of a mother’s rocking motion in adults,” J. Robot. Netw. Artif. Life, No. 2, 129 (2017).

  • Shumov, D. E., Arsen’ev, G. N., Sveshnikov, D. S., and Dorokhov, V. B., “Comparative analysis of the effect of stimulation with a binaural beat and similar kinds of sounds on the falling asleep process: A brief note,” Moscow Univ. Biol. Sci. Bull., 72, No. 1, 33–36 (2017).

  • Shumov, D. E., Effects of the Binaural Beat Effect on the Process of Going to Sleep: Thesis for Master’s Degree in Biological Sciences, Moscow (2020).

  • Shumov, D. E., Yakovenko, I. A., Dorokhov, et al., “Napping between scylla and charybdis of N1 and N3: latency to N2 in a brief afternoon nap can be reduced by binaural beating,” Biol. Rhythm Res., 52, No. 2, 227–236 (2021).

    Article  Google Scholar 

  • Shutova, S. V., “Aromatherapy: physiological effects and possible mechanisms (literature review),” Vestn. Ross. Univ. Matemat., 18, No. 4, 1 (2013).

  • Steffen, P. R., Austin, T., DeBarros, A., and Brown, T., “The impact of resonance frequency breathing on measures of heart rate variability, blood pressure, and mood,” Front. Public Health, 5, 222 (2017).

    Article  Google Scholar 

  • Talamini, L. M. and Juan, E., “Sleep as a window to treat affective disorders,” Curr. Opin. Behav. Sci., 33, 99–108 (2020).

    Article  Google Scholar 

  • Tang, H. Y. Jean, Riegel, B., McCurry, S. M., and Vitiello, M. V., “Openloop audio-visual stimulation (AVS, A useful tool for management of insomnia?” Appl. Psychophysiol. Biofeedback, 41, No. 1, 39–46 (2016).

  • Tang, H. Y. Jean, Vitiello, M. V., Perlis, M., and Riegel, B., “Open-loop neurofeedback audiovisual stimulation: a pilot study of its potential for sleep induction in older adults,” Appl. Psychophysiol. Biofeedback, 40, No. 3, 183–188 (2015).

    Article  Google Scholar 

  • Timofeev, I. and Chauvette, S., “Neuronal activity during the sleep–wake cycle,” in: Handbook of Sleep Research, Elsevier (2019), pp. 3–17.

  • Togo, F., Aizawa, S., Arai, J., et al., “influence on human sleep patterns of lowering and delaying the minimum core body temperature by slow changes in the thermal environment,” Sleep, 30, No. 6, 797–802 (2007).

    Article  Google Scholar 

  • Troynikov, O., Watson, C. G., and Nawaz, N., “Sleep environments and sleep physiology: A review,” J. Therm. Biol., 78, 192–203 (2018).

    Article  Google Scholar 

  • Tsai, H. J., Kuo, T. B., Lee, G. S., and Yang, C. C., “Efficacy of paced breathing for insomnia: Enhances vagal activity and improves sleep quality,” Psychophysiology, 52, No. 3, 388–396 (2015).

    Article  Google Scholar 

  • Van Cauter, E., Spiegel, K., Tasali, E., and Leproult, R., “Metabolic consequences of sleep and sleep loss,” Sleep Med., 9, S23–S28 (2008).

    Article  Google Scholar 

  • van Maanen, A., Meijer, A. M., van der Heijden, K. B., and Oort, F. J., “The effects of light therapy on sleep problems: A systematic review and meta-analysis,” Sleep Med. Rev., 29, 52–62 (2016).

    Article  Google Scholar 

  • van Sluijs, R. M., Rondei, Q. J., Schluep, D., et al., “Effect of rocking movements on afternoon sleep,” Front. Neurosci., 13, 1446 (2020b).

    Article  Google Scholar 

  • van Sluijs, R. M., Wilhelm, E., Rondei, Q. J., et al., “Sensory stimulation in the treatment of children with sleep-related rhythmic movement disorder: a feasibility and acceptability study,” Sleep Sci. Pract., 4, No. 1, 13 (2020a).

  • van Sluijs, R., Wilhelm, E., Rondei, Q., et al., “Gentle rocking movements during sleep in the elderly,” J. Sleep Res., 29, No. 6, e12989 (2020c).

  • Vein, A. M., Eligulashvili, T. S., and Poluektov, M. G., Sleep Apnea Syndrome, Eidos Media, Moscow (2002).

    Google Scholar 

  • Waits, A., Tang, Y. R., Cheng, H. M., et al., “Acupressure effect on sleep quality: A systematic review and meta-analysis,” Sleep Med. Rev., 37, 24–34 (2018).

    Article  Google Scholar 

  • Walker, M. P. and van Der Helm, E., “Overnight therapy? The role of sleep in emotional brain processing,” Psychol. Bull., 135, No. 5, 731 (2009).

  • Wang, C. X., Hilburn, I. A., Wu, D.-A., et al., “Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain,” eNeuro, 6, No. 2, ENEURO.0483-18.2019 (2019).

  • West, K. E., Jablonski, M. R., Warfield, B., et al., “Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans,” J. Appl. Physiol., 110, No. 3, 619–626 (2011).

    Article  Google Scholar 

  • Woodward, S., Tauber, E. S., Spielmann, A. J., and Thorpy, M. J., “Effects of otolithic vestibular stimulation on Sleep,” Sleep, 13, No. 6, 533– 537 (1990).

    Article  Google Scholar 

  • Wu, D. J., Dong, H. C., Tang, T. N., and Zhu, S. F., “Acupressure for insomnia: A protocol for systematic review and meta-analysis,” Medicine (Baltimore), 97, No. 45, e13180 (2018).

  • Yeung, W. F., Chung, K. F., Poon, M. M., et al., “Acupressure, reflexology, and auricular acupressure for insomnia: a systematic review of randomized controlled trials,” Sleep Med., 13, No. 8, 971–84 (2012).

    Article  Google Scholar 

  • Zaccaro, A., Piarulli, A., Laurino, M., et al., “How breath-control can change your life: a systematic review on psycho-physiological correlates of slow breathing,” Front. Hum. Neurosci., 12, 353 (2018).

    Article  Google Scholar 

  • Zenchenko, T. A. and Breus, T. K., “The possible effect of space weather factors on various physiological systems of the human organism,” Atmosphere, 12, No. 3, No. 46 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dorokhov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 1, pp. 55–76, January–February, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhov, V.B., Puchkova, A.N. Neurotechnologies for the Nonpharmacological Treatment of Sleep Disorders. Neurosci Behav Physi 52, 1030–1044 (2022). https://doi.org/10.1007/s11055-022-01331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01331-2

Keywords

Navigation