Skip to main content
Log in

The Mu Rhythm in Current Research: Theoretical and Methodological Aspects

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The mu rhythm is of interest in research into a wide range of processes, from motor functions to language processes and emotions. This rhythm includes at least two nonharmonic components in the α (8–13 Hz) and β (15–25 Hz) frequency ranges, with different functional roles, indicating the need for them to be studied independently. Overlap with α activity requires the effects of changes in attention to be monitored, with consideration of electrical activity not confined to the central leads, and also the application of mathematical methods of discriminating the mu and α rhythms. Mu rhythm suppression has been proposed as an index of arousal for the mirror neuron system, which has provoked much discussion and many studies, including those linked with the potential mixing of mirror neuron system activity and attention system activity. This review addresses current research in the context of these three aspects and includes results from the authors’ own research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aflalo, T., Zhang, C. Y., Rosario, E. R., et al., “A shared neural substrate for action verbs and observed actions in human posterior parietal cortex,” Sci. Adv., 6, No. 43, eabb3984 (2020).

  • Aleksandrov, A. A. and Tugin, S. M., “Changes in the mu rhythm in different types of motor activity and observation of movements,” Ros. Fiziol. Zh., 96, No. 11, 46–54 (2010).

    Google Scholar 

  • Alhajri, N., Hodges, N. J., Zwicker, J. G., and Virji-Babul, N., “Mu suppression is sensitive to observational practice but results in different patterns of activation in comparison with physical practice,” Neural Plast., 2018, 8309483 (2018).

    Article  Google Scholar 

  • Alikina, M. A., Makhin, S. A., and Pavlenko, V. B., “Amplitude-frequency, topographical, and age-related characteristics and functional significance of the EEG sensorimotor rhythm,” Uch. Zap. Krym. Fed. Univ. im. Vernadskogo. Biol. Khim., 2, No. 2, 3–24 (2016).

    Google Scholar 

  • Angelini, M., Fabbri-Destro, M., Lopomo, N. F., et al., “Perspectivedependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: an EEG study,” Sci. Rep., 8, No. 1, 1–11 (2018).

    Article  Google Scholar 

  • Aridan, N., Ossmy, O., Buaron, B., et al., “Suppression of EEG mu rhythm during action observation corresponds with subsequent changes in behavior,” Brain Res., 1691, 55–63 (2018).

    Article  Google Scholar 

  • Arnstein, D., Cui, F., Keysers, C., et al., “μ-Suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices,” J. Neurosci., 31, No. 40, 14243– 14249 (2011).

    Article  Google Scholar 

  • Avanzini, P., Fabbri-Destro, M., Dalla Volta, R., et al., “The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study,” PLoS One, 7, No. 5, e37534 (2012).

  • Bartur, G., Pratt, H., and Soroker, N., “Changes in mu and beta amplitude of the EEG during upper limb movement correlate with motor impairment and structural damage in subacute stroke,” Clin. Neurophysiol., 130, No. 9, 1644–1651 (2019).

    Article  Google Scholar 

  • Bechtold, L., Ghio, M., Lange, J., and Bellebaum, C., “Event-related desynchronization of mu and beta oscillations during the processing of novel tool names,” Brain Lang., 177, 44–55 (2018).

    Article  Google Scholar 

  • Behmer, L. P., Jr. and Fournier, L. R., “Mirror neuron activation as a function of explicit learning: changes in mu-event-related power after learning novel responses to ideomotor compatible, partially compatible, and non-compatible stimuli,” Eur. J. Neurosci., 44, No. 10, 2774–2785 (2016).

    Article  Google Scholar 

  • Bernier, R., Dawson, G., Webb, S., and Murias, M., “EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder,” Brain Cogn., 64, No. 3, 228–237 (2007).

    Article  Google Scholar 

  • Bimbi, M., Festante, F., Coudé, G., et al., “Simultaneous scalp recorded EEG and local fi eld potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm,” NeuroImage, 175, 22–31 (2018).

    Article  Google Scholar 

  • Boonstra, T. W., Daffertshofer, A., Breakspear, M., and Beek, P. J., “Multivariate time-frequency analysis of electromagnetic brain activity during bimanual motor learning,” NeuroImage, 36, No. 2, 370–377 (2007).

    Article  Google Scholar 

  • Bowers, A., Saltuklaroglu, T., Jenson, D., et al., “Power and phase coherence in sensorimotor mu and temporal lobe alpha components during covert and overt syllable production,” Exp. Brain Res., 237, No. 3, 705–721 (2019).

    Article  Google Scholar 

  • Bowman, L. C., Bakermans-Kranenburg, M. J., Yoo, K. H., et al., “The mu-rhythm can mirror: Insights from experimental design, and looking past the controversy,” Cortex, 96, 121–125 (2017).

    Article  Google Scholar 

  • Braadbaart, L., Williams, J. H., and Waiter, G. D., “Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation?” Int. J. Psychophysiol., 89, No. 1, 99–105 (2013).

    Article  Google Scholar 

  • Brinkman, L., Stolk, A., Dijkerman, H. C., et al., “Distinct roles for alphaand beta-band oscillations during mental simulation of goal-directed actions,” J. Neurosci., 34, No. 44, 14783–14792 (2014).

    Article  Google Scholar 

  • Brismar, T., “The human EEG – physiological and clinical studies,” Physiol. Behav., 92, No. 1–2, 141–147 (2007).

    Article  Google Scholar 

  • Brown, E. C., Gonzalez-Liencres, C., and Tas, C., “Reward modulates the mirror neuron system in schizophrenia: A study into the mu rhythm suppression, empathy, and mental state attribution,” Soc. Neurosci., 11, No. 2, 175–186 (2016).

    Article  Google Scholar 

  • Bruni, S., Gerbella, M., Bonini, L., et al., “Cortical and subcortical connections of parietal and premotor nodes of the monkey hand mirror neuron network,” Brain Struct. Funct., 223, No. 4, 1713–1729 (2018).

    Google Scholar 

  • Brunsdon, V. E. A., Bradford, E. E. F., Smith, L., and Ferguson, H. J., “Short-term physical training enhances mirror system activation to action observation,” Soc. Neurosci., 15, No. 1, 98–107 (2020).

    Article  Google Scholar 

  • Buneo, C. A., Jarvis, M. R., Batista, A. P., and Andersen, R. A., “Direct visuomotor transformations for reaching,” Nature, 416, 632–636 (2002).

    Article  Google Scholar 

  • Capotosto, P., Babiloni, C., Romani, G. L., and Corbetta, M., “Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms,” J. Neurosci., 29, 5863–5872 (2009).

    Article  Google Scholar 

  • Carlqvist, H., Nikulin, V. V., Strömberg, J. O., and Brismar, T., “Amplitude and phase relationship between alpha and beta oscillations in the human electroencephalogram,” Med. Biol. Eng. Comput., 43, No. 5, 599–607 (2005).

    Article  Google Scholar 

  • Caspers, S., Zilles, K., Laird, A. R., and Eickhoff, S. B., “ALE meta-analysis of action observation and imitation in the human brain,” NeuroImage, 50, 1148–1167 (2010).

    Article  Google Scholar 

  • Cebolla, A. M., Petieau, M., Dan, B., et al., “Cerebellar contribution to visuo- attentional alpha rhythm: insights from weightlessness,” Sci. Rep., 6, No. 1, 1–10 (2016).

    Article  Google Scholar 

  • Chatrian, G. E., Petersen, M. C., and Lazarte, J. A., “The blocking of the rolandic wicket rhythm and some central changes related to movement,” Electroencephalogr. Clin. Neurophysiol, 11, 497–510 (1959).

    Article  Google Scholar 

  • Cochin, S., Barthelemy, C., Roux, S., and Martineau, J., “Observation and execution of movement: similarities demonstrated by quantified electroencephalography,” Eur. J. Neurosci., 11, 1839–1842 (1999).

    Article  Google Scholar 

  • Cole, E. J., Barraclough, N. E., and Enticott, P. G., “Investigating mirror system (MS) activity in adults with asd when inferring others’ intentions using both TMS and EEG,” J. Autism Dev. Disord., 48, No. 7, 2350–2367 (2018).

    Article  Google Scholar 

  • Coll, M. P., Press, C., Hobson, H., et al., “Crossmodal classification of mu rhythm activity during action observation and execution suggests specificity to somatosensory features of actions,” J. Neurosci., 37, No. 24, 5936–5947 (2017).

    Article  Google Scholar 

  • Cook, R., Bird, G., Catmur, C., et al., “Mirror neurons: from origin to function,” Behav. Brain Sci., 37, 177–192 (2014).

    Article  Google Scholar 

  • Cuellar, M. E. and Del Toro, C. M., “Time-frequency analysis of mu rhythm activity during picture and video action naming tasks,” Brain Sci., 7, No. 9, 114 (2017).

  • Cuellar, M., Harkrider, A. W., Jenson, D., et al., “Time–frequency analysis of the EEG mu rhythm as a measure of sensorimotor integration in the later stages of swallowing,” Clin. Neurophysiol., 127, No. 7, 2625–2635 (2016).

    Article  Google Scholar 

  • Cuevas, K., Cannon, E. N., Yoo, K., and Fox, N. A., “The infant EEG mu rhythm: methodological considerations and best practices,” Dev. Rev., 34, No. 1, 26–43 (2014).

    Article  Google Scholar 

  • De Vega, M., Padrón, I., Moreno, I. Z., et al., “Both the mirror and the affordance systems might be impaired in adults with high autistic traits. Evidence from EEG mu and beta rhythms,” Autism Res., 12, No. 7, 1032–1042 (2019).

    Article  Google Scholar 

  • Debnath, R., Salo, V. C., Buzzell, G. A., et al., “Mu rhythm desynchronization is specifi c to action execution and observation: Evidence from time-frequency and connectivity analysis,” NeuroImage, 184, 496–507 (2019).

    Article  Google Scholar 

  • Démas, J., Bourguignon, M., Périvier, M., et al., “Mu rhythm: State of the art with special focus on cerebral palsy,” Ann. Phys. Rehabil. Med., 63, No. 5, 439–446 (2019).

    Article  Google Scholar 

  • Denis, D., Rowe, R., Williams, A. M., and Milne, E., “The role of cortical sensorimotor oscillations in action anticipation,” NeuroImage, 146, 1102–1114 (2017).

    Article  Google Scholar 

  • Di Pellegrino, G., Fadiga, L., Fogassi, L., et al., “Understanding motor events: a neurophysiological study,” Exp. Brain Res., 91, No. 1, 176–180 (1992).

    Article  Google Scholar 

  • Dillon, D. G. and Pizzagalli, D. A., “Inhibition of action, thought, and emotion: a selective neurobiological review,” Appl. Prev. Psychol., 12, No. 3, 99–114 (2007).

    Article  Google Scholar 

  • Dinstein, I., Thomas, C., Behrmann, M., and Heeger, D. J., “A mirror up to nature,” Curr. Biol., 18, No. 1, R13–R18 (2008).

    Article  Google Scholar 

  • Dumas, G., Soussignan, R., Hugueville, L., et al., “Revisiting mu suppression in autism spectrum disorder,” Brain Res., 1585, 108–119 (2014).

    Article  Google Scholar 

  • Engel, A. K. and Fries, P., “Beta-band oscillations–signalling the status quo?” Curr. Opin. Neurobiol., 20, 156–165 (2010).

    Article  Google Scholar 

  • Ensenberg, N. S., Perry, A., and Aviezer, H., “Are you looking at me? Mu suppression modulation by facial expression direction,” Cogn. Affect. Behav. Neurosci., 17, No. 1, 174–184 (2017).

    Article  Google Scholar 

  • Fitzpatrick, P., Mitchell, T., Schmidt, R. C., et al., “Alpha band signatures of social synchrony,” Neurosci. Lett., 699, 24–30 (2019).

    Article  Google Scholar 

  • Forschack, N., Nierhaus, T., Müller, M. M., and Villringer, A., “Alphaband brain oscillations shape the processing of perceptible as well as imperceptible somatosensory stimuli during selective attention,” J. Neurosci., 37, No. 29, 6983–6994 (2017).

    Article  Google Scholar 

  • Fox, N. A., Bakermans-Kranenburg, M. J., et al., “Assessing human mirror activity with EEG mu rhythm: A meta-analysis,” Psychol. Bull., 142, No. 3, 291–313 (2016).

    Article  Google Scholar 

  • Frenkel-Toledo, S., Bentin, S., Perry, A., et al., “Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements,” Brain Res., 1509, 43–57 (2013).

    Article  Google Scholar 

  • Frenkel-Toledo, S., Liebermann, D. G., Bentin, S., and Soroker, N., “Dysfunction of the human mirror neuron system in ideomotor apraxia: Evidence from mu suppression,” J. Cogn. Neurosci., 28, No. 6, 775–791 (2016).

    Article  Google Scholar 

  • Frolov, A. A., Aziatskaya, G. A., Bobrov, P. D., et al., “Brain electrophysiological activity while controlling a brain–computer interface based on motor imagery,” Fiziol. Cheloveka, 43, No. 5, 17–28 (2017a).

    Google Scholar 

  • Frolov, A. A., Fedotova, I. R., Gusek, D., and Bobrov, P. D., “Rhythmic brain activity and a brain–computer interface based on motor imagery,” Usp. Fiziol. Nauk., 48, No. 3, 72–91 (2017b).

    Google Scholar 

  • Garakh, Z., Novototsky-Vlasov, V., Larionova, E., and Zaytseva, Y., “Mu rhythm separation from the mix with alpha rhythm: Principal component analyses and factor topography,” J. Neurosci. Meth., 346, 108892 (2020).

    Article  Google Scholar 

  • Garakh, Zh. V., Zaytseva, Yu. S., Novototskii-Vlasov, V. Yu., et al., “Suppression of the EEG mu rhythm in motor imagery in schizophrenia patients,” Sotsial. Klin. Psikhiatr., 24, No. 3, 5–11 (2014).

    Google Scholar 

  • Gastaut, H., “Étude électrocorticographique de la réativité des rhythmes rolandiques,” Rev. Neurologique, 87, 176–182 (1952).

    Google Scholar 

  • Gehringer, J. E., Arpin, D. J., Heinrichs-Graham, E., et al., “Practice modulates motor-related beta oscillations differently in adolescents and adults,” J. Physiol., 597, No. 12, 3203–3216 (2019).

    Article  Google Scholar 

  • Gutsell, J. N., Simon, J. C., and Jiang, Y., “Perspective taking reduces group biases in sensorimotor resonance,” Cortex, 131, 42–53 (2020).

    Article  Google Scholar 

  • Hanakawa, T., “Organizing motor imageries,” Neurosci. Res., 104, 56–63 (2016).

    Article  Google Scholar 

  • Hari, R. and Salmelin, R., “Human cortical oscillations: a neuromagnetic view through the skull,” Trends Neurosci., 20, No. 1, 44–49 (1997).

    Article  Google Scholar 

  • Heimann, K. S., Uithol, S., Calbi, M., et al., “’Cuts in Action’: A high-density EEG study investigating the neural correlates of different editing techniques in fi lm,” Cogn. Sci., 41, No. 6, 1555–1588 (2017).

    Article  Google Scholar 

  • Heimann, K., Uithol, S., Calbi, M., et al., “Embodying the camera: An EEG study on the effect of camera movements on film spectators sensorimotor cortex activation,” PLoS One, 14, No. 3, e0211026 (2019).

  • Heinrichs-Graham, E. and Wilson, T. W., “Coding complexity in the human motor circuit,” Hum. Brain Mapp., 36, No. 12, 5155–5167 (2015).

    Article  Google Scholar 

  • Hobson, H. M. and Bishop, D. V. M., “Mu suppression – A good measure of the human mirror neuron system?” Cortex, 82, 290–310 (2016).

    Article  Google Scholar 

  • Hobson, H. M. and Bishop, D. V., “The interpretation of mu suppression as an index of mirror neuron activity: past, present and future,” R. Soc. Open Sci., 4, No. 3, 160662 (2017).

  • Horan, W. P., Pineda, J. A., Wynn, J. K., et al., “Some markers of mirroring appear intact in schizophrenia: evidence from mu suppression,” Cogn. Affect. Behav. Neurosci., 14, No. 3, 1049–1060 (2014).

    Article  Google Scholar 

  • Hudac, C. M., Stessman, H. A. F., DesChamps, T. D., et al., “Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism,” J. Neurodev. Disord., 9, 24 (2017).

    Article  Google Scholar 

  • Isoda, K., Sueyoshi, K., Ikeda, Y., et al., “Effect of the hand-omitted tool motion on mu rhythm suppression,” Front. Hum. Neurosci., 10, 266 (2016).

    Article  Google Scholar 

  • Iwane, F., Lisi, G., and Morimoto, J., “EEG sensorimotor correlates of speed during forearm passive movements,” IEEE T. Neural Syst. Rehabil. Eng., 27, No. 9, 1667–1675 (2019).

    Article  Google Scholar 

  • Jensen, O. and Mazaheri, A., “Shaping functional architecture by oscillatory alpha activity: gating by inhibition,” Front. Hum. Neurosci., 4, 186 (2010).

    Article  Google Scholar 

  • Jenson, D., Bowers, A. L., Harkrider, A. W., et al., “Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data,” Front. Psychol., 5, 656 (2014).

    Article  Google Scholar 

  • Jenson, D., Bowers, A. L., Hudock, D., and Saltuklaroglu, T., “The application of EEG mu rhythm measures to neurophysiological research in stuttering,” Front. Hum. Neurosci., 13, 458 (2020).

    Article  Google Scholar 

  • Jenson, D., Thornton, D., Harkrider, A. W., and Saltuklaroglu, T., “Influences of cognitive load on sensorimotor contributions to working memory: an EEG investigation of mu rhythm activity during speech discrimination,” Neurobiol. Learn. Mem., 166, 107098 (2019).

    Article  Google Scholar 

  • Jochumsen, M., Rovsing, C., Rovsing, H., et al., “Quantifi cation of movement- related EEG correlates associated with motor training: A study on movement-related cortical potentials and sensorimotor rhythms,” Front. Hum. Neurosci., 11, 604 (2017).

    Article  Google Scholar 

  • John, A. M. S., Kao, K., Choksi, M., et al., “Variation in infant EEG power across social and nonsocial contexts,” J. Exp. Child Psychol., 152, 106–122 (2016).

    Article  Google Scholar 

  • Jongsma, M., Steenbergen, B., Baas, C. M., et al., “Lateralized EEG mu power during action observation and motor imagery in typically developing children and children with unilateral Cerebral Palsy,” Clin. Neurophysiol., 131, No. 12, 2829–2840 (2020).

    Article  Google Scholar 

  • Karakale, O., Moore, M. R., and Kirk, I. J., “Mental simulation of facial expressions: Mu suppression to the viewing of dynamic neutral face videos,” Front. Hum. Neurosci., 13, 34 (2019).

    Article  Google Scholar 

  • Kerechanin, Ya. V., Gusek, D., Bobrov, et al., “Sources of electrical activation of brain areas involved in motor imagery,” Zh. Vyssh. Nerv. Deyat., 69, No. 6, 711–725 (2019).

  • Kessler, K., Biermann-Ruben, K., Jonas, M., et al., “Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements,” NeuroImage, 33, No. 1, 227–238 (2006).

    Article  Google Scholar 

  • Kilavik, B. E., Zaepffel, M., Brovelli, A., et al., “The ups and downs of beta oscillations in sensorimotor cortex,” Exp. Neurol., 245, 15–26 (2013).

    Article  Google Scholar 

  • Kim, J. and Kim, S., “The effects of visual stimuli on EEG mu rhythms in healthy adults,” J. Phys. Ther. Sci., 28, No. 6, 1748–1752 (2016).

    Article  Google Scholar 

  • Kittilstved, T., Reilly, K. J., Harkrider, A. W., et al., “The effects of fluency enhancing conditions on sensorimotor control of speech in typically fluent speakers: an EEG mu rhythm study,” Front. Hum. Neurosci., 12, 126 (2018).

    Article  Google Scholar 

  • Klass, D. W. and Bickford, R. G., “Observations on the rolandic arceau rhythm,” Electroencephalogr. Clin. Neurophysiol., 9, No. 3, 570 (1957).

  • Klimesch, W., Sauseng, P., and Hanslmayr, S., “EEG alpha oscillations: the inhibition-timing hypothesis,” Brain Res. Rev., 53, 63–88 (2007).

    Article  Google Scholar 

  • Kompatsiari, K., Bossi, F., and Wykowska, A., “Eye contact during joint attention with a humanoid robot modulates oscillatory brain activity,” Soc. Cogn. Affect. Neurosci., 16, No. 4, 383–392 (2021).

    Article  Google Scholar 

  • Kooiman, V. G. M., van Keeken, H. G., Maurits, N. M., et al., “Rhythmic neural activity is comodulated with short-term gait modifications during first-time use of a dummy prosthesis: a pilot study,” J. Neuroeng. Rehabil., 17, No. 1, 134 (2020).

  • Krol, M. A., Schutter, D. J. L. G., and Jellema, T., “Sensorimotor cortex activation during anticipation of upcoming predictable but not unpredictable actions,” Soc. Neurosci., 15, No. 2, 214–226 (2020).

    Article  Google Scholar 

  • Kuhlman, W. N., “Functional topography of the human mu rhythm,” Electroencephalogr. Clin. Neurophysiol., 44, 83–93 (1978).

    Article  Google Scholar 

  • Lebedeva, N. N., Burkitbaev, S. E., and Karimova, E. D., “Activation of the mirror system of the brain depends on the means of stimulus presentation: directly by the experimenter or using video clips,” Zh. Vyssh. Nerv. Deyat., 70, No. 4, 460–472 (2020).

    Google Scholar 

  • Lebedeva, N. N., Karimova, E. D., Karpychev, V. V., and Mal’tsev, V. Yu., “The mirror system of the brain on observation, performance, and imagination of motor tasks – neurophysiological refl ection of the perception of another’s consciousness,” Zh. Vyssh. Nerv. Deyat., 68, No. 2, 204–215 (2018).

  • Liburkina, S. P., Vasil’ev, A. N., Kaplan, A. Ya., et al., “A pilot study of ideomotor training in brain–computer interfaces in patients with motor impairments,” Zh. Nevrol. Psikhiatr., Spec. Iss., 118, No. 9, 63– 68 (2018).

  • Lin, N. H., Liu, C. H., Lee, P., et al., “Backward walking induces significantly larger upper-mu-rhythm suppression effects than forward walking does,” Sensors, 20, No. 24, 7250 (2020).

  • Livi, A., Lanzilotto, M., Maranesi, M., et al., “Agent-based representations of objects and actions in the monkey pre-supplementary motor area,” Proc. Natl. Acad. Sci. USA, 116, No. 7, 2691–2700 (2019).

    Article  Google Scholar 

  • Lust, J. M., van Schie, H. T., Wilson, P. H., et al., “Activation of mirror neuron regions is altered in developmental coordination disorder (DCD)-neurophysiological evidence using an action observation paradigm,” Front. Hum. Neurosci., 13, 232 (2019).

    Article  Google Scholar 

  • Makeig, S., Delorme, A., Westerfield, M., et al., “Electroencephalographic brain dynamics following manually responded visual targets,” PLoS Biol., 2, 747–762 (2004).

  • Malcolm, B. R., Foxe, J. J., Butler, J. S., et al., “Cognitive load reduces the effects of optic fl ow on gait and electrocortical dynamics during treadmill walking,” J. Neurophysiol., 120, No. 5, 2246–2259 (2018).

    Article  Google Scholar 

  • Marini, F., Breeding, K. A., and Snow, J. C., “Distinct visuo-motor brain dynamics for real-world objects versus planar images,” NeuroImage, 195, 232–242 (2019).

    Article  Google Scholar 

  • Marshall, P. J. and Meltzoff, A. N., “Neural mirroring mechanisms and imitation in human infants,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, No. 1644, 20130620 (2014).

  • Martin, F., Flasbeck, V., Brown, E. C., and Brüne, M., “Altered mu-rhythm suppression in Borderline Personality Disorder,” Brain Res., 1659, 64–70 (2017).

    Article  Google Scholar 

  • Mazaheri, A., Nieuwenhuis, I. L. C., van Dijk, H., and Jensen, O., “Prestimulus alpha and mu activity predicts failure to inhibit motor responses,” Hum. Brain Mapp., 30, No. 6, 1791–1800 (2009).

    Article  Google Scholar 

  • McCormick, L. M., Brumm, M. C., Beadle, J. N., et al., “Mirror neuron function, psychosis, and empathy in schizophrenia,” Psychiatry Res., 201, No. 3, 233–239 (2012).

    Article  Google Scholar 

  • McFarland, D. J., Miner, L. A., Vaughan, T. M., and Wolpaw, J. R., “Mu and beta rhythm topographies during motor imagery and actual movements,” Brain Topogr., 12, No. 3, 177–186 (2000).

    Article  Google Scholar 

  • Mitra, S., Haque Nizamie, S., Goyal, N., and Tikka, S. K., “Event related desynchronisation of mu-wave over right sensorimotor cortex at baseline may predict subsequent response to antipsychotics in schizophrenia,” Asian J. Psychiatr., 14, 19–21 (2015).

    Article  Google Scholar 

  • Mizuhara, H., “Cortical dynamics of human scalp EEG origins in a visually guided motor execution,” NeuroImage, 62, No. 3, 1884–1895 (2012).

    Article  Google Scholar 

  • Moisello, C., Blanco, D., Lin, J., et al., “Practice changes beta power at rest and its modulation during movement in healthy subjects but not in patients with Parkinson’s disease,” Brain Behav., 5, No. 10, e00374 (2015).

  • Mokienko, O. A., Chernikova, L. A., Frolov, A. A., and Bobrov, P. D., “Motor imagery and its practical application,” Zh. Vyssh. Nerv. Deyat., 63, No. 2, 195–204 (2013).

    Google Scholar 

  • Molenberghs, P., Cunnington, R., and Mattingley, J. B., “Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies,” Neurosci. Biobehav. Rev., 36, No. 1, 341–349 (2012).

    Article  Google Scholar 

  • Moore, M. R. and Franz, E. A., “Mu rhythm suppression is associated with the classification of emotion in faces,” Cogn. Affect. Behav. Neurosci., 17, No. 1, 224–234 (2016).

    Article  Google Scholar 

  • Moreno, I., de Vega, M., and León, I., “Understanding action language modulates oscillatory mu and beta rhythms in the same way as observing actions,” Brain Cogn., 82, No. 3, 236–242 (2013).

    Article  Google Scholar 

  • Mukamel, R., Ekstrom, A. D., Kaplan, J., et al., “Single-neuron responses in humans during execution and observation of actions,” Curr. Biol., 20, No. 8, 750–756 (2010).

    Article  Google Scholar 

  • Mulder, T., “Motor imagery and action observation: cognitive tools for rehabilitation,” J. Neural Transm. (Vienna), 114, No. 10, 1265–1278 (2007).

    Article  Google Scholar 

  • Muthukumaraswamy, S. D. and Johnson, B. W., “Changes in rolandic mu rhythm during observation of a precision grip,” Psychophysiology, 41, No. 1, 152–156 (2004).

    Article  Google Scholar 

  • Muthukumaraswamy, S. D. and Singh, K. D., “Modulation of the human mirror neuron system during cognitive activity,” Psychophysiology, 45, No. 6, 896–905 (2008).

    Article  Google Scholar 

  • Muthukumaraswamy, S. D., Johnson, B. W., and McNair, N. A., “Mu rhythm modulation during observation of an object-directed grasp,” Cogn. Brain Res., 19, No. 2, 195–201 (2004).

    Article  Google Scholar 

  • Nishimura, Y., Ikeda, Y., and Higuchi, S., “The relationship between inhibition of automatic imitation and personal cognitive styles,” J. Physiol. Anthropol., 37, No. 1, 1–10 (2018).

    Article  Google Scholar 

  • Oberman, L. M., Hubbard, E. M., McCleery, J. P., et al., “EEG evidence for mirror neuron dysfunction in autism spectrum disorders,” Br ain Res. Cogn. Brain Res., 24, No. 2, 190–198 (2005).

    Article  Google Scholar 

  • Oberman, L. M., McCleery, J. P., Hubbard, E. M., et al., “Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders,” Soc. Cogn. Affect. Neurosci., 8, No. 3, 300–304 (2013).

    Article  Google Scholar 

  • Oberman, L. M., Pineda, J. A., and Ramachandran, V. S., “The human mirror neuron system: A link between action observation and social skills,” Soc. Cogn. Affect. Neurosci., 2, No. 1, 62–66 (2007).

    Article  Google Scholar 

  • Oosterhof, N. N., Tipper, S. P., and Downing, P. E., “Crossmodal and action- specific: neuroimaging the human mirror neuron system,” Trends Cogn. Sci., 17, No. 7, 311–318 (2013).

    Article  Google Scholar 

  • Park, J. H., Cynn, H. S., Cha, K. S., et al., “Event-related desynchronization of mu rhythms during concentric and eccentric contractions,” J. Mot. Behav., 50, No. 4, 457–466 (2018).

    Article  Google Scholar 

  • Park, W., Kwon, G. H., Kim, D. H., et al., “Assessment of cognitive engagement in stroke patients from single-trial EEG during motor rehabilitation,” IEEE T. Neural Syst. Rehabil. Eng., 23, No. 3, 351– 362 (2015).

    Article  Google Scholar 

  • Peled-Avron, L., Goldstein, P., Yellinek, S., et al., “Empathy during consoling touch is modulated by mu-rhythm: An EEG study,” Neuropsychologia, 116, 68–74 (2018).

    Article  Google Scholar 

  • Pereira, M., Argelaguet, F., Millán, J. D. R., and Lécuyer, A., “Novice shooters with lower pre-shooting alpha power have better performance during competition in a virtual reality scenario,” Front. Psychol., 9, 527 (2018).

    Article  Google Scholar 

  • Perry, A. and Bentin, S., “Does focusing on hand-grasping intentions modulate electroencephalogram mu and alpha suppressions?” Neuroreport, 21, No. 16, 1050–1054 (2010).

    Article  Google Scholar 

  • Pfurtscheller, G. and Lopes da Silva, F. H., “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., 110, No. 11, 1842–1857 (1999).

    Article  Google Scholar 

  • Pfurtscheller, G., Neuper, C., and Krausz, G., “Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement,” Clin. Neurophysiol., 111, No. 10, 1873–1879 (2000).

    Article  Google Scholar 

  • Pilacinski, A. and Lindner, A., “Distinct contributions of human posterior parietal and dorsal premotor cortex to reach trajectory planning,” Sci. Rep., 9, 1962 (2019).

    Article  Google Scholar 

  • Pineda, J. A., “The functional signifi cance of mu rhythms: translating ‘seeing’ and ‘hearing’ into ‘doing’,” Brain Res. Brain Res. Rev., 50, No. 1, 57–68 (2005).

    Article  Google Scholar 

  • Pollok, B., Latz, D., Krause, V., et al., “Changes of motor-cortical oscillations associated with motor learning,” Neuroscience, 275, 47–53 (2014).

    Article  Google Scholar 

  • Pomiechowska, B. and Csibra, G., “Motor activation during action perception depends on action interpretation,” Neuropsychologia, 105, 84– 91 (2017).

    Article  Google Scholar 

  • Proverbio, A. M., “Tool perception suppresses 10–12 Hz mu rhythm of EEG over the somatosensory area,” Biol. Psychol., 91, No. 1, 1–7 (2012).

    Article  Google Scholar 

  • Rashid, M., Sulaiman, N., Majeed, A. P. A., et al., “Current status, challenges, and possible solutions of EEG-based brain–computer interface: a comprehensive review,” Front. Neurorobot., 14, 25 (2020).

    Article  Google Scholar 

  • Rayson, H., Bonaiuto, J. J., Ferrari, P. F., and Murray, L., “Early maternal mirroring predicts infant motor system activation during facial expression observation,” Sci. Rep., 7, No. 1, 1–11 (2017).

    Article  Google Scholar 

  • Reid, V. M., Striano, T., and Iacoboni, M., “Neural correlates of dyadic interaction during infancy,” Dev. Cogn. Neurosci., 1, No. 2, 124–130 (2011).

    Article  Google Scholar 

  • Remsik, A. B., Williams, L., Jr., Gjini, K., et al., “Ipsilesional mu rhythm desynchronization and changes in motor behavior following post stroke BCI intervention for motor rehabilitation,” Front. Neurosci., 13, 53 (2019).

    Article  Google Scholar 

  • Ricci, S., Mehraram, R., Tatti, E., et al., “Aging does not affect beta modulation during reaching movements,” Neural Plast., 2019, 1619290 (2019).

    Article  Google Scholar 

  • Riečanský, I., Lengersdorff, L. L., Pfabigan, D. M., and Lamm, C., “Increasing self-other bodily overlap increases sensorimotor resonance to others’ pain,” Cogn. Affect. Behav. Neurosci., 20, No. 1, 19–33 (2020).

    Article  Google Scholar 

  • Rimbert, S., Al-Chwa, R., Zaepffel, M., and Bougrain, L., “Electroencephalographic modulations during an open-or closed-eyes motor task,” PeerJ, 6, e4492 (2018).

    Article  Google Scholar 

  • Ritter, P., Moosmann, M., and Villringer, A., “Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex,” Hum. Brain Mapp., 30, No. 4, 1168–1187 (2009).

    Article  Google Scholar 

  • Rizzolatti, G. and Craighero, L., “The mirror-neuron system,” Annu. Rev. Neurosci., 27, 169–192 (2004).

    Article  Google Scholar 

  • Rizzolatti, G. and Sinigaglia, C., “The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations,” Nat. Rev. Neurosci., 11, No. 4, 264–274 (2010).

    Article  Google Scholar 

  • Rüther, N. N., Brown, E. C., Klepp, A., and Bellebaum, C., “Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices,” Behav. Brain Res., 261, 328–335 (2014).

    Article  Google Scholar 

  • Ruysschaert, L., Warreyn, P., Wiersema, J. R., et al., “Exploring the role of neural mirroring in children with autism spectrum disorder,” Autism Res., 7, No. 2, 197–206 (2014).

    Article  Google Scholar 

  • Saltuklaroglu, T., Harkrider, A. W., Thornton, D., et al., “EEG mu (μ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults,” NeuroImage, 153, 232–245 (2017).

    Article  Google Scholar 

  • Sauseng, P., Klimesch, W., Stadler, W., et al., “A shift of visual spatial attention is selectively associated with human EEG alpha activity,” Eur. J. Neurosci., 22, 2917–2926 (2005).

    Article  Google Scholar 

  • Sestito, M., Harel, A., Nador, J., and Flach, J., “Investigating neural sensorimotor mechanisms underlying fl ight expertise in pilots: Preliminary data from an EEG study,” Front. Hum. Neurosci., 12, 489 (2018).

    Article  Google Scholar 

  • Shen, G., Saby, J. N., Drew, A. R., and Marshall, P. J., “Exploring potential social infl uences on brain potentials during anticipation of tactile stimulation,” Brain Res., 1659, 8–18 (2017).

    Article  Google Scholar 

  • Shibuya, S., Unenaka, S., Zama, T., et al., “Sensorimotor and posterior brain activations during the observation of illusory embodied fake hand movement,” Front. Hum. Neurosci., 13, 367 (2019).

    Article  Google Scholar 

  • Simon, S. and Mukamel, R., “Power modulation of electroencephalogram mu and beta frequency depends on perceived level of observed actions,” Brain Behav., 6, No. 8, e00494 (2016).

  • Singh, F., Pineda, J., and Cadenhead, K. S., “Association of impaired EEG mu wave suppression, negative symptoms and social functioning in biological motion processing in fi rst episode of psychosis,” Schizophr. Res., 130, No. 1–3, 182–186 (2011).

    Article  Google Scholar 

  • Siqi-Liu, A., Harris, A. M., Atkinson, A. P., and Reed, C. L., “Dissociable processing of emotional and neutral body movements revealed by μ-alpha and beta rhythms,” Soc. Cogn. Affect. Neurosci., 13, No. 12, 1269–1279 (2018).

    Google Scholar 

  • Smyk, N. J., Weiss, S. M., and Marshall, P. J., “Sensorimotor oscillations during a reciprocal touch paradigm with a human or robot partner,” Front. Psychol., 9, 2280 (2018).

    Article  Google Scholar 

  • Sotoodeh, M. S., Taheri-Torbati, H., Hadjikhani, N., and Lassalle, A., “Preserved action recognition in children with autism spectrum disorders: Evidence from an EEG and eye-tracking study,” Psychophysiology, 58, No. 3, e13740 (2020).

  • Tan, H., Wade, C., and Brown, P., “Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models,” J. Neurosci., 36, No. 5, 1516–1528 (2016).

    Article  Google Scholar 

  • Tangwiriyasakul, C., Verhagen, R., van Putten, M. J., and Rutten, W. L. C., “Importance of baseline in event-related desynchronization during a combination task of motor imagery and motor observation,” J. Neural Eng., 10, No. 2, 026009 (2013).

  • Tatti, E., Ricci, S., Nelson, A. B., et al., “Prior practice affects movement- related beta modulation and quiet wake restores it to baseline,” Front. Syst. Neurosci., 14, 61 (2020).

    Article  Google Scholar 

  • Thornton, D., Harkrider, A. W., Jenson, D., and Saltuklaroglu, T., “Sensorimotor activity measured via oscillations of EEG mu rhythms in speech and non-speech discrimination tasks with and without segmentation demands,” Brain Lang., 187, 62–73 (2018).

    Article  Google Scholar 

  • Tiihonen, J., Kajola, M., and Hari, R., “Magnetic mu rhythm in man,” Neuroscience, 32, No. 3, 793–800 (1989).

    Article  Google Scholar 

  • Turella, L., Pierno, A. C., Tubaldi, F., and Castiello, U., “Mirror neurons in humans: consisting or confounding evidence?” Brain Lang., 108, 10–21 (2009).

    Article  Google Scholar 

  • Tzagarakis, C., West, S., and Pellizzer, G., “Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band,” Front. Neurosci., 9, 246 (2015).

    Article  Google Scholar 

  • Ulloa, E. R. and Pineda, J. A., “Recognition of point-light biological motion: mu rhythms and mirror neuron activity,” Behav. Brain Res., 183, No. 2, 188–194 (2007).

    Article  Google Scholar 

  • Van de Vijver, I., Van Schie, H. T., Veling, H., et al., “Go/no-go training affects frontal midline theta and mu oscillations to passively observed food stimuli,” Neuropsychologia, 119, 280–291 (2018).

    Article  Google Scholar 

  • Van Overwalle, F. and Baetens, K., “Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis,” NeuroImage, 48, 564–584 (2009).

    Article  Google Scholar 

  • Wamain, Y., Sahaï, A., Decroix, J., et al., “Confl ict between gesture representations extinguishes μ rhythm desynchronization during manipulable object perception: an EEG study,” Biol. Psychol., 132, 202–211 (2018).

    Article  Google Scholar 

  • Weiss, S. M., Laconi, R. N., and Marshall, P. J., “Individual differences in anticipatory mu rhythm modulation are associated with executive function and processing speed,” Cogn. Affect. Behav. Neurosci., 20, No. 5, 901–916 (2020).

    Article  Google Scholar 

  • Wen, W., Yamashita, A., and Asama, H., “Measurement of the Perception of control during continuous movement using electroencephalography,” Front. Hum. Neurosci., 11, 392 (2017).

    Article  Google Scholar 

  • Williams, J. H., Whiten, A., Suddendorf, T., and Perrett, D. I., “Imitation, mirror neurons and autism,” Neurosci. Biobehav. Rev., 25, No. 4, 287–295 (2001).

    Article  Google Scholar 

  • Wu, C. C., Hamm, J. P., Lim, V. K., and Kirk, I. J., “Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies,” Exp. Brain Res., 234, No. 8, 2133– 2139 (2016).

    Article  Google Scholar 

  • Wu, C. C., Hamm, J. P., Lim, V. K., and Kirk, I. J., “Musical training increases functional connectivity, but does not enhance mu suppression,” Neuropsychologia, 104, 223–233 (2017).

    Article  Google Scholar 

  • Yang, C. Y., Decety, J., Lee, S., et al., “Gender differences in the mu rhythm during empathy for pain: an electroencephalographic study,” Brain Res., 1251, 176–184 (2009).

    Article  Google Scholar 

  • Yin, J., Ding, X., Xu, H., et al., “Social coordination information in dynamic chase modulates EEG mu rhythm,” Sci. Rep., 7, No. 1, 1–9 (2017).

    Article  Google Scholar 

  • Yin, S., Liu, Y., and Ding, M., “Amplitude of sensorimotor mu rhythm is correlated with BOLD from multiple brain regions: a simultaneous EEG-fMRI study,” Front. Hum. Neurosci., 10, 364 (2016).

    Article  Google Scholar 

  • Yordanova, J., Kolev, V., and Rothenberger, A., “Event-related oscillations reflect functional asymmetry in children with attention defi cit/hyperactivity disorder,” Suppl. Clin. Neurophysiol., 62, 289–301 (2013).

    Article  Google Scholar 

  • Zaytseva, Y., Morozova, A., Bendova, M., and Garakh, Z., “Is motor imagery different in catatonic schizophrenia?” Psych. J., 6, No. 2, 137– 138 (2017).

    Article  Google Scholar 

  • Zhang, D. and Gu, R., “Behavioral preference in sequential decision-making and its association with anxiety,” Hum. Brain Mapp., 39, No. 6, 2482–2499 (2018).

    Article  Google Scholar 

  • Zhang, K., Xu, G., Zheng, X., et al., “Application of transfer learning in EEG decoding based on brain–computer interfaces: A review,” Sensors (Basel), 20, No. 21, 6321 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Larionova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 1, pp. 11–35, January–February, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionova, E.V., Garakh, Z.V. & Zaytseva, Y.S. The Mu Rhythm in Current Research: Theoretical and Methodological Aspects. Neurosci Behav Physi 52, 999–1016 (2022). https://doi.org/10.1007/s11055-022-01329-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01329-w

Keywords

Navigation