Skip to main content
Log in

Changes in Electrocortiographic Indicators in Rats in Situations of Real Threats to Life in a Vital Stress Model

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies using a vital stress model addressed the influences of a psychologically traumatizing treatment on the rhythmic structure of the electrocorticogram (ECoG) in the rat brain on experiencing the death of a partner due to a predator. The moment of experiencing the threat to life was found to be accompanied by a significant increase in slow-wave activity in the δ range, increases in interhemisphere asymmetry in ECoG indicators in the α and δ frequency ranges in the frontal area, and decreases in asymmetry in the θ range in the frontal area and the δ rhythm in the occipital cortex. The largest changes in brain bioelectrical activity were seen in the rhythm index in the α, β, θ, and δ frequencies; asymmetry was also detected 2 h after stress, while high levels of the rhythm index in the δ range persisted to three days after the threat to life, which is evidence for the strongly aversive nature of the psychologically traumatizing exposure and the important role of the δ rhythm in reflecting the circumstances of the vital stress experienced. Changes in the rhythmic structure of ECoG indicators at the moment of the life-threatening situation may provide an objective measure of the fear experienced during vital stress and may be evidence that the processes forming post-traumatic stress disorder are triggered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Nikul’cheva, N. N. Klyueva, N. S. Parfenova, et al., “Investigation of the long-term effects of psychogenic stress on lipid metabolism in male rats,” Neirokomp. Razrab. Primenen., No. 5, 56–58 (2016); htp://www.mosmedclinic.ru/conf_library/2003/4/447/.

  2. S. G. Tsicunov, A. G. Pshenichnaya, N. N. Klyueva, et al., “Vital stress causes long-lasting behavioral disorders and lipid metabolism deviations in female rats,” Obzory Klin. Farmakol. Lek. Ter., 14, No. 4, 32–41 (2016), https://doi.org/https://doi.org/10.17816/RCF14432-41.

  3. B. Bandelow, D. Baldwin, M. Abelli, et al., “Biological markers for anxiety disorders, OCD and PTSD A consensus statement. Part II Neurochemistry, neurophysiology and neurocognition,” World J. Biol. Psychiatry, 18, No. 3, 162–214 (2017), https://doi.org/https://doi.org/10.1080/15622975.2016.1190867.

  4. A. A. Pashkov, I. S. Dakhtin, and N. S. Kharisova, “Electroencephalographic biomarkers of experimentally induced stress,” Vestn. YuUrGU Ser. Psikhol., 10, No. 4, 68–82 (2017), https://doi.org/https://doi.org/10.14529/psy170407.

  5. Yu. I. Sysoev, V. A. P’yankova, K. A. Kroshkina, et al., “Crosscorrelation and coherence analysis of electrocorticograms of rats with traumatic brain injury,” Ros. Fiziol. Zh., 106, No. 3, 315–328 (2020), https://doi.org/10.31857/S0869813920030085.

    Google Scholar 

  6. M. T. Nedelcovych, R. W. Gould, X. Zhan, et al., “A rodent model of traumatic stress induces lasting sleep and quantitative electroencephalographic disturbances,” ACS Chem. Neurosci., 6, No. 3, 485–493 (2015), https://doi.org/https://doi.org/10.31857/S0869813920030085.

  7. S. G. Tsicunov, “Neurobiology of vital stress. New models of mental trauma and post-traumatic stress disorder,” Obz. Klin. Farmakol. Lek. Ter., 13, 187–188 (2015).

    Google Scholar 

  8. G. Paxinos and C. Watsone, The Rat Brain in Stereotaxic Coordinates, Elsevier Academic Press, Amsterdam, Boston (2006), 6th ed., eBook, ISBN 9780080475158.

  9. K. V. Konstantinov, M. K. Leonova, D. B. Miroshnikov, and V. M. Klimenko, “Characteristics of the perception of an acoustic image on own brain bioelectrical activity,” Ros. Fiziol. Zh., 100, No. 6, 710–721 (2014), https://elibrary.ru/item.asp?id=21614489.

    CAS  Google Scholar 

  10. H. A. Kirkpatrick and G. M. Heller, “Post-traumatic stress disorder: Theory and treatment update,” Int. J. Psychiatry. Med., 47, No. 4, 337–346 (2014), https://doi.org/https://doi.org/10.2190/PM.47.4.h.

  11. I. Lobo, L. C. Portugal, I. Figueira, et al., “EEG correlates of the severity of posttraumatic stress symptoms A systematic review of the dimensional PTSD literature,” J. Affect. Disord., 183, 210–220 (2015), https://doi.org/https://doi.org/10.1016/j.jad.2015.05.015.

  12. I. V. Shadrina, K. N. Dedova, and A. N. Pugachev, “Neurophysiological features of brain functioning (based on results of analysis of EEG indicators) and their effects on psychological characteristics in patients with post-traumatic stress disorder,” Vestn. YuUrGU Ser. Obraz. Zdravookhr. Fizich. Kult., 7, No. 224, 84–86 (2011), https://readera.org/147153440.

  13. R. G. Nabiev, O. G. Kondrat’eva, and D. Z. Shibkova, “Changes in the functional state of the central nervous system during the formation of post-traumatic stress disorder,” Sovr. Probl. Nauki Obrazov., No. 3, 595–602 (2015), https://elibrary.ru/item.asp?id=23704024.

  14. N. K. Apraksina, T. V. Avaliany, and S. G. Tsicunov, “Dynamics of ECOG indicators of female rats during and after vital stress,” Obz. Klin. Farmakol. Lek. Ter., 16, No. 1, 14–15 (2018), https://cyberleninka.ru/article/n/materialy-mezhdunarodnoy-konferentsii-psihofiziologiya-i-psihoneyroendokrinologiya-stavropol-23-26-maya-2018-g.

    Google Scholar 

  15. C. Gronfier, C. Simon, F. Piquard, et al., “Neuroendocrine processes underlying ultradian sleep regulation in man,” Clin. Endocrinol. Metab., 84, No. 8, 2686–2690 (1999), https://doi.org/https://doi.org/10.1210/jcem.84.8.5893.

  16. G. G. Knyazev, “EEG delta oscillations as a correlate of basic homeostatic and motivational processes,” Neurosci. Biobehav. Rev., 36, No. 1, 677–695 (2012), https://doi.org/https://doi.org/10.1016/j.neubiorev.2011.10.002.

  17. D. Schutter and J. Van Honk, “Decoupling of midfrontal delta–beta oscillations after testosterone administration,” Int. J. Psychophysiol., 53, No. 1, 71–73 (2004), https://doi.org/https://doi.org/10.1016/j.ijpsycho.2003.12.012.

  18. S. J. Mitchell and J. B. Ranck, Jr., “Generation of theta rhythm in medial entorhinal cortex of freely moving rats,” Brain Res., 189, 49–66 (1980), https://doi.org/https://doi.org/10.1016/0006-8993(80)90006-2.

  19. D. R. Collins, E. J. Lang, and D. Pare, “Spontaneous activity of the perirhinal cortex in behaving cats,” Neuroscience, 89, 1025–1039 (1999), https://doi.org/https://doi.org/10.1016/S0306-4522(98)00396-0.

  20. M. J. Kahana, D. Seelig, and J. R. Madsen, “Theta returns,” Curr. Opin. Neurobiol, 11, No. 6, 739–744 (2001), https://doi.org/https://doi.org/10.1016/S0959-4388(01)00278-1.

  21. G. Buzsaki, “Theta rhythm of navigation link between path integration and landmark navigation, episodic and semantic memory,” Hippocampus, 15, No. 7, 827–840 (2005), https://doi.org/https://doi.org/10.1002/hipo.20113.

  22. C. K. Young and N. McNaughton, “Coupling of theta oscillationsbetween anterior and posterior midline cortex and with the hippocampus in freely behaving rats,” Cereb. Cortex, 19, No. 1, 24 (2009), https://doi.org/https://doi.org/10.1093/cercor/bhn055.

  23. C. H. Vanderwolf, “Hippocampal electrical activity and voluntary movement in the rat,” Electroencephalogr. Clin. Neurophysiol., 26, No. 4, 407–418 (1969), https://doi.org/https://doi.org/10.1016/0013-4694(69)90092-3.

  24. T. Seidenbecher, T. R. Laxmi, O. Stork, and H. C. Pape, “Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval,” Science, 301, 846–850 (2003), https://doi.org/https://doi.org/10.1126/science.1085818.

  25. C. Babiloni, C. Miniussib, F. Babilonia, et al., “Sub-second temporal attention modulates alpha rhythms. A high-resolution EEG study,” Cogn. Brain Res., 19, No. 3, 259–268 (2004), https://doi.org/https://doi.org/10.1016/j.cogbrainres.2003.12.010.

  26. W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillations the inhibition-timing hypothesis,” Brain Res. Rev., 53, No. 1, 63–68 (2007), https://doi.org/https://doi.org/10.1016/j.brainresrev.2006.06.003.

  27. V. V. Gnezditskii, S. N. Kulikova, and E. E. Koshurnikova, “Features of the EEG and P300 in the assessment of cognitive impairment,” Nevrologiya, 3, 43–49 (2009), https://elibrary.ru/item.asp?id=16401179.

    Google Scholar 

  28. M. D. Spiridonova, “Features of EEG power spectra when experiencing feelings of fear,” Molodoi Uchenyi, No. 8, 130–132 (2013), https://elibrary.ru/item.asp?id=20143699.

  29. I. A. Lapin and M. V. Alfimova, “EEG markers of depressive states,” Sots. Klin. Psikhiatriya, 24, No. 4, 81–89 (2014), https://cyberleninka.ru/article/n/eeg-markery-depressivnyh-sostoyaniy.

    Google Scholar 

  30. S. G. Dan’ko, N. P. Bekhtereva, N. V. Shemyakina, and L. V. Antonova, “ Electroencephalographic correlates of mental experience of emotional personal and stage situations. II. Features of spatial synchronization,” Fiziol. Cheloveka, 29, No. 6, 685–693 (2003), https://elibrary.ru/item.asp?id=17292760.

    Google Scholar 

  31. I. R. Il’yuchenok, “Differences in EEG frequency characteristics in the perception of positive emotional, negative emotional, and neutral words,” Zh. Vyssh. Nerv. Deyat., 46, No. 3, 457–468 (1996), https://elibrary.ru/item.asp?id=14936855.

    Google Scholar 

  32. E. D. Khomskaya and N. Ya. Batova, The Brain and Emotions (neuropsychological research), Moscow State University Press, Moscow (1992), http://psychologylib.ru/books/item/f00/s00/z0000037/.

    Google Scholar 

  33. L. I. Aftanas, N. V. Reva, A. A. Varlamov, et al., “Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans temporal and topographic characteristics,” Neurosci. Behav. Physiol., 34, No. 8, 859–867 (2004), https://elibrary.ru/item.asp?id=13449607.

    Article  CAS  Google Scholar 

  34. W. Heller, “Neuropsychological mechanisms of individual differences in emotion, personality, and arousal,” Neuropsychology, 7, No. 4, 476–489 (1993), https://doi.org/https://doi.org/10.1037/0894-4105.7.4.476.

  35. S. B. Seredenin, R. G. Kozhedub, N. E. Sviderskaya, et al., “ Features of stress reaction in rats with genetically determined emotionality (EEG indicators),” Zh. Vyssh. Nerv. Deyat., No. 5, 617–624 (2001), http://elib.fesmu.ru/elib/Article.aspx?id=65958.

    Google Scholar 

  36. T. V. Avaliany, K. V. Konstantinov, A. V. Bykova, et al., “Correction of the functional state of female rats by EEG-dependent acoustic exposure in a model of vital stress,” Neirokomp. Razrab. Primenen., No. 7, 5–10 (2014), https://elibrary.ru/item.asp?id=21695322.

  37. S. F. Maier, L. R. Watkins, and M. Fleshner, “Psychoneuroimmunology the interface between behaviour, brain and immunity,” Am. Psychologist, 49, No. 12, 1004–1017 (1994), https:doi.org10.1037%2F0003-066x.49.12.1004.

  38. M. N. Rusalova and M. B. Kostyunina, “Reflection in the interhemispheric distribution of frequency-amplitude EEG indicators of the strength of emotional experience, the magnitude of need, and the probability of its satisfaction.” Fiziol. Cheloveka, 26, No. 1, 32–39 (2000), http://elib.fesmu.ru/elib/Article.aspx?id=41052.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Apraksina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 107, No. 12, pp. 1553–1567, December, 2021.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apraksina, N.K., Avaliany, T.V. & Tsicunov, S.G. Changes in Electrocortiographic Indicators in Rats in Situations of Real Threats to Life in a Vital Stress Model. Neurosci Behav Physi 52, 739–746 (2022). https://doi.org/10.1007/s11055-022-01298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01298-0

Keywords

Navigation