Skip to main content
Log in

Microglial Reactivity in the Prefrontal Cortex in Schizophrenia with Different Types of Course

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. The aim of the study was morphometric assessment of the numerical density and ultrastructural parameters of microglia in the prefrontal cortex in chronic attack-like progressive and continuous schizophrenia as compared to healthy controls. Materials and methods. A post-mortem electron microscopy morphometric study was performed on microglia in the prefrontal cortex (layer 5 of Brodmann field 10). Ten cases of chronic attack-like progressive schizophrenia and nine of continuous schizophrenia and 20 healthy control cases were studied. The numerical density of microglia, microglial soma and nucleus areas, nucleus-cytoplasm ratio, volume fraction, area and number of mitochondria, vacuoles of endoplasmic reticulum, and lipofuscin granules were estimated. The schizophrenia and control groups were compared by covariance analysis. Results. Both groups showed significant decreases in the volume fraction and number of mitochondria and increases in these parameters for lipofuscin granules as compared with the control group. The group with attack-like progressive schizophrenia displayed significant increases in microglial density and in area of vacuoles as compared with the control group. Microglial density was increased in the subgroup of young(≤50 years) patients as compared with the subgroup of older people (>50 years) in the control group. Increases in microglial soma and nuclear areas were found in young patients as compared with the elderly people in the control group, elderly patients with attack-like progressive schizophrenia and young patients with continuous schizophrenia. In the group with attack-like progressive schizophrenia, in contrast to patients with continuous schizophrenia, microglial soma and nuclear areas and the number of mitochondria correlated negatively with age, while area of lipofuscin granules correlated positively with age and disease duration. Conclusions. Chronic attack-like progressive schizophrenia is characterized by increased microglial reactivity at young age and by dystrophic changes in microglia progressing with age and disease duration. Continuous schizophrenia is linked with decreased microglial reactivity and non-progressive dystrophic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Najjar, D. M. Pearlman, K. Alper, et al., “Neuroinflammation and psychiatric illness,” J. Neuroinflammation, 10, 43 (2013), https://doi.org/10.1186/1742-2094-10-43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. O. Trépanier, K. E. Hopperton, R. Mizrahi, et al., “Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review,” Mol. Psychiatry, 21, 1009–1026 (2016), https://doi.org/10.1038/mp.2016.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. N. Müller, “Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations,” Schizophr. Bull., 44, No. 5, 973–982 (2018), https://doi.org/10.1093/schbul/sby024.

    Article  PubMed  PubMed Central  Google Scholar 

  4. J. K. Olson and S. D. Miller, “Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs,” J. Immunol., 173, No. 6, 3916–3924 (2004), https://doi.org/10.4049/jimmunol.173.6.3916.

    Article  CAS  PubMed  Google Scholar 

  5. N. A. Munn, “Microglia dysfunction in schizophrenia: an integrative theory,” Med. Hypotheses, 54, 2:198–202 (2000), https://doi.org/10.1054/mehy.1999.0018.

    Article  CAS  PubMed  Google Scholar 

  6. A. Monji, T. Kato, and S. Kanba, “Cytokines and schizophrenia: Microglia hypothesis of schizophrenia,” Psychiatry Clin. Neurosci., 63, No. 3, 257–265 (2009), https://doi.org/10.1111/j.1440-1819.2009.01945.x.

    Article  CAS  PubMed  Google Scholar 

  7. J. Doorduin, E. F. de Vries, A. T. Willemsen, et al., “Neuroinflammation in schizophrenia-related psychosis: a PET study,” J. Nucl. Med., 50, No. 11, 1801–1807 (2009), https://doi.org/10.2967/jnumed.109.066647.

    Article  PubMed  Google Scholar 

  8. A. Takano, R. Arakawa, H. Ito, et al., “Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C] DAA1106,” Int. J. Neuropsychopharmacol., 13, No. 7, 943– 950 (2010), https://doi.org/10.1017/S1461145710000313.

    Article  CAS  PubMed  Google Scholar 

  9. L. E. Laskaris, M. A. Di Biase, I. Everall, et al., “Microglial activation and progressive brain changes in schizophrenia,” Br. J. Pharmacol., 173, No. 4, 666–680 (2016), https://doi.org/10.1111/bph.13364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L. De Picker, J. Ottoy, J. Verhaeghe, et al., “State-associated changes in longitudinal [18F]-PBR111 TSPO PET imaging of psychosis patients: Evidence for the accelerated ageing hypothesis?” Brain Behav. Immun., 77, 46–54 (2019), https://doi.org/10.1016/j.bbi.2018.11.318.

    Article  PubMed  Google Scholar 

  11. E. Gatta, V. Saudagar, J. Drnevich, et al., “Concordance of immunerelated markers in lymphocytes and prefrontal cortex in schizophrenia,” Schizophr. Bull. Open, 2, No. 1, sgab002 (2021), https://doi.org/10.1093/schizbullopen/sgab002.

    Article  PubMed  PubMed Central  Google Scholar 

  12. J. Kindler, C. K. Lim, C. S. Weickert, et al., “Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia,” Mol. Psychiatry, 25, No. 11, 2860–2872 (2020), https://doi.org/10.1038/s41380-019-0401-9.

    Article  PubMed  Google Scholar 

  13. K. Radewicz, L. J. Garey, S. M. Gentleman, and R. Reynolds, “Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics,” J. Neuropathol. Exp. Neurol., 59, No. 2, 137–150 (2000), https://doi.org/10.1093/jnen/59.2.137.

    Article  CAS  PubMed  Google Scholar 

  14. T. Wierzba-Bobrowicz, E. Lewandowska, W. Lechowicz, et al., “Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics,” Folia Neuropathol., 43, No. 2, 81–89 (2005).

    PubMed  Google Scholar 

  15. J. Steiner, H. Bielau, R. Brisch, et al., “Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide,” J. Psychiatr. Res., 42, No. 2, 151–157 (2008), https://doi.org/10.1016/j.jpsychires.2006.10.013.

    Article  PubMed  Google Scholar 

  16. S. G. Fillman, N. Cloonan, V. S. Catts, et al., “Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia,” Mol. Psychiatry, 18, No. 2, 206–214 (2013), https://doi.org/10.1038/mp.2012.110.

    Article  CAS  PubMed  Google Scholar 

  17. S. Busse, M. Busse, K. Schiltz, et al., “Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations?” Brain Behav. Immun., 26, No. 8, 1273–1279 (2012), https://doi.org/10.1016/j.bbi.2012.08.005.

    Article  CAS  PubMed  Google Scholar 

  18. T. P. Klyushnik, S. A. Zozulya, L. V. Androsova, et al., “Immunological monitoring of endogenous episodic psychoses,” Zh. Nevrol. Psikhiatr., 114, No. 2, 37–41(2014).

    Google Scholar 

  19. L. V. Androsova, N. M. Mikhailova, S. A. Zozulya, et al., “Inflammatory markers in schizophrenia in the elderly,” Zh. Nevrol. Psikhiatr., 114, No. 12, 60–64(2014).

    Article  CAS  Google Scholar 

  20. I. V. Shcherbakova, V. G. Kaleda, A. N. Barkhatova, and T. P. Klyushnik, “Endothelial dysfunction markers in episodic schizophrenia,” Zh. Nevrol. Psikhiatr., 105, No. 3, 43–46 (2005).

    CAS  Google Scholar 

  21. H. Q. Cai, V. S. Catts, M. J. Webster, et al., “Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation,” Mol. Psychiatry, 25, No. 4, 761–775 (2020), https://doi.org/10.1038/s41380-018-0235-x.

    Article  CAS  PubMed  Google Scholar 

  22. N. A. Uranova, P. D. Bonartsev, L. V. Androsova, et al., “Impaired monocyte activation in schizophrenia: ultrastructural abnormalities and increased IL-1β production,” Eur. Arch. Psychiatry Clin. Neurosci., 267, No. 5, 417–426 (2017), https://doi.org/10.1007/s00406-017-0782-1.

    Article  PubMed  Google Scholar 

  23. I. I. Glezer and L. I. Sukhorukova, “Structural characteristics of the neuroglia in schizophrenia with episodic and continuous types of course (histological and electron microscope studies),” Zh. Nevrol. Psikhiatr., 66, No. 10, 1529–1537 (1966).

    CAS  Google Scholar 

  24. L. I. Sukhorukova, “Neuroglial changes in schizophrenia with the continuous type of course,” Zh. Nevrol. Psikhiatr., 66, No. 9, 1408– 1416 (1966).

    CAS  Google Scholar 

  25. J. E. Black, I. M. Kodish, A. W. Grossman, et al., “Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia,” Am. J. Psychiatry, 161, No. 4, 742–744 (2004), https://doi.org/10.1176/appi.ajp.161.4.742.

    Article  PubMed  Google Scholar 

  26. N. S. Kolomeets and N. A. Uranova, “Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia,” Eur. Arch. Psychiatry Clin. Neurosci., 269, No. 4, 379–386 (2019), https://doi.org/10.1007/s00406-018-0888-0.

    Article  PubMed  Google Scholar 

  27. N. A. Uranova, N. S. Kolomeets, O. V. Vikhreva, et al., “Ultrastructural changes in myelinated fibers in the brain in continuous and episodic-progressive schizophrenia,” Zh. Nevrol. Psikhiatr., 117, No. 2, 104–109 (2017).

    Article  CAS  Google Scholar 

  28. M. J. Rey, P. Schulz, C. Costa, et al., “Guidelines for the dosage of neuroleptics. I: Chlorpromazine equivalents of orally administered neuroleptics,” Int. Clin. Psychopharmacol., 4, No. 2, 95–104 (1989), https://doi.org/10.1097/00004850-198904000-00001.

    Article  CAS  PubMed  Google Scholar 

  29. O. V. Vikhreva, V. I. Rakhmanova, D. D. Orlovskaya, and N. A. Uranova, “Ultrastructural pathology oligodendrocytes in the white matter in episodic-progressive schizophrenia and the role of the microglia,” Zh. Nevrol. Psikhiatr., 118, No. 5, 69–74 (2018), https://doi.org/10.17116/jnevro20181185169.

    Article  CAS  Google Scholar 

  30. T. A. Kato, Y. Yamauchi, H. Horikawa, et al., “Neurotransmitters, psychotropic drugs and microglia: clinical implications for psychiatry,” Curr. Med. Chem., 20, No. 3, 331–344 (2013), https://doi.org/10.2174/0929867311320030003.

    Article  CAS  PubMed  Google Scholar 

  31. O. O. Okusaga, “Accelerated aging in schizophrenia patients: the potential role of oxidative stress,” Aging Dis., 5, No. 4, 256–262 (2013), https://doi.org/10.14336/AD.2014.0500256.

    Article  PubMed  PubMed Central  Google Scholar 

  32. O. D. Howes and R. McCutcheon, “Inflammation and the neural diathesis- stress hypothesis of schizophrenia: a reconceptualization,” Transl. Psychiatry, 7, No. 2, e1024 (2017), https://doi.org/10.1038/tp.2016.278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. Ferle, A. Repouskou, G. Aspiotis, et al., “Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines,” Physiol. Behav., 215, 112791 (2020), https://doi.org/10.1016/j.physbeh.2019.112791.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Uranova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 121, No. 12, Iss. 1, pp. 77–83, December, 2021

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikhreva, O.V., Uranova, N.A. Microglial Reactivity in the Prefrontal Cortex in Schizophrenia with Different Types of Course. Neurosci Behav Physi 52, 639–644 (2022). https://doi.org/10.1007/s11055-022-01289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01289-1

Keywords

Navigation