Skip to main content
Log in

CNS Maturation Process in Children and Adolescents in the Northern Region of the Russian Federation and Its Reflection in the Dynamics of Integral EEG Parameters

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We present here results from analysis of the formation of brain bioelectrical activity in children and adolescents living in the northern region of Russia based on evaluation of integral multichannel EEG parameters. A total of 33 boys and 32 girls aged 7–18 years studying at rural schools took part in the study. The study was run in two stages, each of which consisted of autumn and spring sessions. EEG recordings were made and used to build the structure function and compute the generalized spectrum, along with integral parameters characterizing the temporal (0 ≤ Pt ≤ 1) and spatial (0 ≤ Ps ≤ 1) connectivity of EEG processes. The limiting values of these parameters (0, 1) correspond to the cases of the spatial or temporal organization of the EEG being either completely ordered or completely random. Decreases in Ps were found with increasing age, evidencing increases in spatial connectivity of EEG processes in students from younger to older grades. Conversely, Pt increased with age, characterizing a decrease in the time scale of connectivity and the inertia of EEG processes, and could reflect an increase in the level of functional mobility (lability) of the CNS with increasing age. Assessments of the age-related dynamics of integral EEG parameters in northern schoolchildren were found to depend on season (autumn–spring) and the contingent of subjects selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alferova, V. V. and Farber, D. A., “Refl ection of age-related functional organization of the brain in the resting electroencephalogram,” in: Structural-Functional Organization of the Developing Brain, Nauka, Leningrad (1990), pp. 45–65.

  • Anderson, A. J. and Perone, S., “Developmental change in the resting state electroencephalogram: Insights into cognition and the brain,” Brain Cogn., 126, 40–52 (2018).

    Article  PubMed  Google Scholar 

  • Arshavskii, V. V., Gel’fgat, E. L., Rotenberg, V. S., and Solovenchuk, L. L., “Interhemisphere asymmetry as a factor in the adaptation of humans to the conditions of the North,” Fiziol. Cheloveka, 15, No. 5, 142– 147 (1989).

    CAS  PubMed  Google Scholar 

  • Babiloni, C., Barry, R. J., Başar, E., et al., “International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies,” Clin. Neurophysiol., 131, No. 1, 285–307 (2020).

    Article  PubMed  Google Scholar 

  • Barry, R. J., Clarke, A. R., McCarthy, R., et al., “Age and gender effects in EEG coherence: I. Developmental trends in normal children,” Clin. Neurophysiol., 115, No. 10, 2252–2258 (2004).

    Article  PubMed  Google Scholar 

  • Barvinok, A. I. and Rozhkov, V. P., “Features of the intercenter coordination of cortical electrical processes in mental activity,” Fiziol. Cheloveka, 18, No. 3, 5–16 (1992).

    CAS  PubMed  Google Scholar 

  • Bezrukikh, M. M., Machinskaya, R. I., and Farber, D. A., “Structuralfunctional organization of the developing brain and the formation of cognitive activity in childhood ontogeny,” Fiziol. Cheloveka, 35, No. 6, 10–24 (2009).

    CAS  PubMed  Google Scholar 

  • Boiko, E. R., Physiological an Biochemical Basis of Human Activity in the North, URO RAN, Ekaterinburg (2005).

    Google Scholar 

  • Cekic, S., Grandjean, D., and Renaud, O., “Time, frequency, and time-varying Granger-causality measures in neuroscience,” Stat. Med., 37, No. 11, 1910–1931 (2018).

    Article  PubMed  Google Scholar 

  • Demin, D. B., Poskotinova, L. V., and Krivonogova, E. V., “Variants in the age-related formation of EEG structures in adolescents in Arctic and subpolar regions of the European North,” Vestn. Sev. (Arktich.) Fed. Univ., 1, 41–45 (2013).

    Google Scholar 

  • Dzugaeva, S. B., Conducting Tracts of the Brain, Meditsina, Moscow (1975).

    Google Scholar 

  • Etchell, A., Adhikari, A., Weinberg, L. S., et al., “A systematic literature review of sex differences in childhood language and brain development,” Neuropsychologia, 114, 19–31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Evdokimov, V. G., Rogachevskaya, O. V., and Varlamova, N. G., Modulating Influences of the Factors of the North on the Human Cardiorespiratory System, URO RAN, Ekaterinburg (2007).

    Google Scholar 

  • Gasser, T., Verleger, R., Bacher, P., and Sroka, L., “Development of the EEG of school-age children and adolescents: I. Analysis of band power,” Electroencephalogr. Clin. Neurophysiol., 69, 91–99 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Gavron, A. A., Yacila Isabela Deza Araujo, Sharova, E. V., et al., “Group and individual fMRI analysis of the main resting network in healthy subjects,” Zh. Vyssh. Nerv. Deyat., 69, No. 2, 150–163 (2019).

    Google Scholar 

  • Giedd, J. N., “Structural magnetic resonance imaging of the adolescent brain,” Ann. N. Y. Acad. Sci., 1021, 77–85 (2004).

    Article  PubMed  Google Scholar 

  • Gmehlin, D., Thomas, C., Weisbrod, M., et al., “Development of brain synchronisation within school-age-individual analysis of resting (α) coherence in a longitudinal data set,” Clin. Neurophysiol., 122, No. 10, 1973–1983 (2011).

    Article  PubMed  Google Scholar 

  • Gorbachevskaya, N. L. and Kozhushko, L. F., “Dynamics of EEG formation in school-age boys and girls (data from a nine-year study),” Zh. Nevropatol., 90, No. 8, 75–79 (1990).

    Google Scholar 

  • Gribanov, A. V., Dzhos, Yu. S., Bagretsova, T. V., and Biryukov, I. S., “Photoperiodism and changes in brain bioelectrical activity in schoolchildren in the Arctic zone,” Fiziol. Cheloveka, 42, No. 2, 16–26 (2016b).

    Google Scholar 

  • Gribanov, A. V., Gudkov, A. B., Popova, O. N., and Krainova, I. N., Circulation and Respiration in Schoolchildren in Circumpolar Conditions, SAFU, Arkhangel’sk (2016a).

    Google Scholar 

  • Harris, A. Z. and Gordon, J. A., “Long-range neural synchrony in behavior,” Annu. Rev. Neurosci., 38, 171–194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirnstein, M., Hugdahl, K., and Hausmann, M., “Cognitive sex differences and hemispheric asymmetry: A critical review of 40 years of research,” Laterality, 24, No. 2, 204–252 (2019).

    Article  PubMed  Google Scholar 

  • Jiruška, P., Prokš, J., Drbal, O., et al., “comparison of different methods of time shift measurement in EEG,” Physiol. Res., 54, No. 4, 459–465 (2005).

    PubMed  Google Scholar 

  • Khambhatiab, A. N., Sizemorea, A. E., Betzela, R. F., and Bassett, D. S., “Modeling and interpreting mesoscale network dynamics,” Neuro- Image, 180, No. Part B, 337–349 (2018).

  • Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F., “Microstates in resting-state EEG: Current status and future directions,” Neurosci. Biobehav. Rev., 49, 105–113 (2015).

    Article  PubMed  Google Scholar 

  • Koenig, T., Studer, D., Hubl, D., et al., “Brain connectivity at different time-scales measured with EEG,” Phil. Trans. R. Soc. B. Biol. Sci., 360, No. 1457, 1015–1023 (2005).

    Article  CAS  Google Scholar 

  • Komkova, Yu. N., “Brain electrical activity in children and adolescents at different stages of sexual maturation in the resting state,” Novye Issled., 1, No. 54, 4–25 (2018).

    Google Scholar 

  • Kruchinina, O. V., Stankova, E. P., and Gal’perina, E. I., “Age-related characteristics of the temporospatial organization of the EEG in male and female subjects aged 8–30 years on perception of spoken and written texts,” Fiziol. Cheloveka, 46, No. 3, 15-28 (2020).

    Google Scholar 

  • Kubasov, R. V., Demin, D. B., and Tkachev, A. V., “Adaptive reactions of the endocrine system in children living in conditions of contrasting photoperiods,” Fiziol. Cheloveka, 32, No. 4, 89–96 (2006).

    CAS  PubMed  Google Scholar 

  • Kulaichev, A. P., “Informativeness of coherence analysis in EEG studies,” Zh. Vyssh. Nerv. Deyat., 59, No. 6, 766–775 (2009).

    Google Scholar 

  • Kurgansky, A. V., Lomakin, D. I., and Machinskaya, R. I., “Resting-state networks in adolescents with poor behavior regulation. An analysis of effective cortical connectivity in EEG source space,” Zh. Vyssh. Nerv. Deyat., 70, No. 6, 723–737 (2020).

    Google Scholar 

  • Lebedeva, N. N. and Karimova, E. D., “Stability of human EEG patterns in different tasks: the problem of personal authentication,” Zh. Vyssh. Nerv. Deyat., 70, No. 1, 40–49 (2020).

    Google Scholar 

  • Livanov, M. N., Spatial Organization of Cerebral Processes, Nauka, Moscow (1972).

    Google Scholar 

  • Lüchinger, R., Michels, L., Martin, E., and Brandeis, D., “Brain state regulation during normal development: Intrinsic activity fluctuations in simultaneous EEG-fMRI,” NeuroImage, 60, 1426–1439 (2012).

    Article  PubMed  Google Scholar 

  • Machinskaya, R. I., Kurganskii, A. V., and Lomakin, D. I., “Age-related changes in the functional organization of the cortical components of the regulatory systems of the brain in adolescents. Analysis of resting neural networks in the sources space,” Fiziol. Cheloveka, 5, No. 45, 5–19 (2019).

    Google Scholar 

  • Machinskaya, R. I., Sokolova, L. S., and Krupskaya, E. V., “Formation of the functional organization of the cerebral cortex at rest in young school-age children with different levels of maturity of the cerebral regulatory systems. Communication II. Analysis of the coherence of the EEG α rhythm,” Fiziol. Cheloveka, 33, No. 2, 5–15 (2007).

    Google Scholar 

  • Michel, C. M. and Koenig, T., “EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review,” NeuroImage, 180, No. Pt B, 577–593 (2018).

    Article  PubMed  Google Scholar 

  • Murphy, D. G., DeCarli, C., McIntosh, A. R., et al., “Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging,” Arch. Gen. Psychiatry, 53, No. 7, 585– 594 (1996).

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, G. C., Tewarie, P., Vidaurre, D., et al., “Dynamics of large-scale electrophysiological networks: A technical review,” NeuroImage, 180, No. Pt B, 559–576 (2018).

    Article  PubMed  Google Scholar 

  • Rozhkov, V. P., Trifonov, M. I., and Soroko, S. I., “Study of brain bioelectrical activity maturation in northern schoolchildren with integral parameters of multichannel EEG,” Hum. Physiol., 44, No. 6, 617– 626 (2018).

    Article  Google Scholar 

  • Rozhkov, V. P., Trifonov, M. I., Burykh, E. A., and Soroko, S. I., “Evaluation of the individual resistance to acute hypoxia in humans using integral characteristics of the structure function of the multichannel EEG,” Ros. Fiziol. Zh., 105, No. 7, 832–852 (2019).

    Article  Google Scholar 

  • Seghier, M. L. and Price, C. J., “Interpreting and utilising intersubject variability in brain function,” Trends Cogn. Sci., 22, No. 6, 517–530 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth, A. K., Barrett, A. B., and Barnett, L., “Granger causality analysis in neuroscience and neuroimaging,” J. Neurosci., 35, No. 8, 3293– 3297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder, A. C., Morais, M. J., Willis, C. M., and Smith, M. A., “Global network influences on local functional connectivity,” Nat. Neurosci., 18, No. 5, 736–743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soroko, S. I., Bekshaev, S. S., and Rozhkov, V. P., “EEG correlates of genophenotypic features of the age-related development of the brain in children of the aboriginal and incomer populations of north-eastern Russia,” Ros. Fiziol. Zh., 98, No. 1, 3–26 (2012).

    CAS  Google Scholar 

  • Soroko, S. I., Bekshaev, S. S., Rozhkov, V. P., et al., “General features of the formation of EEG wave structure in children and adolescents living in Northern Europe,” Hum. Physiol., 41, No. 4, 394–403 (2015a).

    Article  Google Scholar 

  • Soroko, S. I., Burykh, E. A., and Sidorenko, G. V., “Characteristics of the age-related development of the brain in children in the conditions of the North,” Ros. Fiziol. Zh., 91, No. 7, 729–739 (2005).

    CAS  Google Scholar 

  • Soroko, S. I., Nagornova, Zh. V., Rozhkov, V. P., and Shemyakina, N. V., “Age-specific characteristics of EEG coherence in children and adolescents living in the European North of Russia,” Hum. Physiol., 41, No. 5, 517–531 (2015b).

    Article  Google Scholar 

  • Stevens, M. C., “The contributions of resting state and task based functional connectivity studies to our understanding of adolescent brain network maturation,” Neurosci. Biobehav. Rev., 70, 13–32 (2016).

    Article  PubMed  Google Scholar 

  • Stokes, P. A. and Purdon, P. L., “A study of problems encountered in Granger causality analysis from a neuroscience perspective,” Proc. Natl. Acad. Sci. USA, 114, No. 34, E7063–E7072 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagaki, K., Russell, J., Lippert, M. T., and Motamedi, G. K., “Development of the posterior basic rhythm in children with autism,” Clin. Neurophysiol., 126, No. 2, 297–303 (2015).

    Article  PubMed  Google Scholar 

  • Thatcher, R. W., North, D. M., and Biver, C. J., “Development of cortical connections as measured by EEG coherence and phase delays,” Hum. Brain Mapp., 29, No. 12, 1400–1415 (2008).

    Article  PubMed  Google Scholar 

  • Trifonov, M., “The structure function as new integral measure of spatial and temporal properties of multi-channel EEG,” Brain Informatics, 3, No. 4, 211–220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsitseroshin, M. N. and Shepoval’nikov, A. N., Establishment of the Integrative Function of the Brain, Nauka, St. Petersburg (2009).

  • Ukhtomskii, A. A., Collected Works, Vol. II, Parabiosis, Physiological Lability, and Rhythm Assimilation, Leningrad State University Press, Leningrad (1951).

  • Vijayakumar, N., Op de Macks, Z., Shirtcliff, E. A., and Pfeifer, J. H., “Puberty and the human brain: Insights into adolescent development,” Neurosci. Biobehav. Rev., 92, 417–436 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitford, T. J., Rennie, C. J., Grieve, S. M., et al., “Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology,” Hum. Brain Mapp., 28, No. 3, 228–237 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Rozhkov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 71, No. 4, pp. 529–546, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkov, V.P., Trifonov, M.I. & Soroko, S.I. CNS Maturation Process in Children and Adolescents in the Northern Region of the Russian Federation and Its Reflection in the Dynamics of Integral EEG Parameters. Neurosci Behav Physi 52, 383–394 (2022). https://doi.org/10.1007/s11055-022-01252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01252-0

Keywords

Navigation