Skip to main content

Advertisement

Log in

Molecular and Clinical Aspects of the Action of Cytidine Diphosphocholine on Cognitive Functions

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. To systematize publications on drugs based on cytidine diphosphocholine (CDP-choline). Materials and methods. Systematic computer analysis of all currently available publications on CDPcholine (1750 publications in PubMed) using topological analysis theory for big data. Results. CDP-choline is required for acetylcholine biosynthesis, phospholipid metabolism, and DNA methylation. This article sequentially considers the effects of CDP-choline on acetylcholinergic and other types of neurotransmission and the anti-inflammatory and neuroprotective effects of CDP-choline, as well as the influences of this molecule on fat metabolism and gene expression in the context of the postgenomic paradigm (particularly elevated expression of nicotinic and muscarinic acetylcholine receptors). Results from basic and clinical studies of CDP-choline in the treatment of cognitive impairments associated with cerebral ischemia and neurodegeneration are presented. Conclusions. The pharmacological effects of CDP-choline are realized via multiple molecular mechanisms contributing to the nootropic actions of this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Parfenov, “Vascular cognitive disorders and chronic cerebral ischemia (dyscirculatory encephalopathy),” Nevrol. Neiropsikh. Psikhosom., 11, No. 3S, 61–67 (2019), https://doi.org/10.14412/2074-2711-2019-3S-61-67.

    Article  Google Scholar 

  2. I. Yu. Torshin and O. A. Gromova, Expert Data Analysis in Molecular Pharmacology (2012).

  3. M. Barrachina, I. Domínguez, S. Ambrosio, et al., “Neuroprotective effect of citicoline in 6-hydroxydopamine-lesioned rats and in 6-hydroxydopamine- treated SH-SY5Y human neuroblastoma cells,” J. Neurol. Sci., 215, No. 1–2, 105–110 (2003), PMID: 14568136, https://doi.org/10.1016/s0022-510x(03)00204-1.

  4. I. Yu. Torshin, O. A. Gromova, L. V. Stakhovskaya, et al., “Chemotranscriptome analysis indicates that the citicoline molecule has neurotrophic and neuromodulating effects,” Nevrol. Neiropsikh. Psikhosom., 12, No. 4, 91–99 (2020), https://doi.org/10.14412/2074-2711-2020-4-91-99.

    Article  Google Scholar 

  5. I. Yu. Torshin and K. V. Rudakov, “On the theoretical basis of metric analysis of poorly formalized problems of recognition,” Patt. Rec. Image Anal., 25, No. 4, 577–587 (2015).

    Article  Google Scholar 

  6. I. Yu. Torshin and K. V. Rudakov, “On metric spaces arising during formalization of recognition and classification problems. Part 1: compactness,” Patt. Rec. Image Anal., 26, No. 2, 274 (2016).

    Article  Google Scholar 

  7. I. Yu. Torshin, “Optimal dictionaries output information based on the criterion of solvability and their applications in bioinformatics,” Patt. Rec. Image Anal., 23, No. 2, 319–327 (2013).

    Article  Google Scholar 

  8. I. Yu. Torshin and K. V. Rudakov, “On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables,” Patt. Rec. Image Anal., 29, No. 4, 654–667 (2019), https://doi.org/10.1134/S1054661819040175.

    Article  Google Scholar 

  9. E. Yu. Solov’eva, K. I. Farrakhova, A. N. Karneev, and D. T. Chipova, “Thew role of phospholipids in ischemic brain damage,” Zh. Nevrol. Psikhiatr., 116, No. 1, 104–112 (2016), PMID: 27045147, https://doi.org/10.17116/jnevro201611611104-112.

  10. F. Amenta, M. A. Di Tullio, and D. Tomassoni, “The cholinergic approach for the treatment of vascular dementia: evidence from preclinical and clinical studies,” Clin. Exp. Hypertens., 24, No. 7–8, 697–713 (2002), PMID: 12450245, https://doi.org/10.1081/ceh-120015346.

  11. M. V. Putilina, “Personalized selection of choline precursors in evidence-based medicine,” Zh. Nevrol. Psikhiatr., 120, No. 6, 144–151 (2020), PMID: 32678562, https://doi.org/10.17116/jnevro2020120061144.

  12. G. Uslu, V. Savci, L. R. Buyukuysal, and G. Goktalay, “CDP-choline attenuates scopolamine induced disruption of prepulse inhibition in rats: involvement of central nicotinic mechanism,” Neurosci. Lett., 569, 153–157 (2014), https://doi.org/10.1016/j.neulet.2014.03.070.

    Article  CAS  PubMed  Google Scholar 

  13. J. Choueiry, C. M. Blais, D. Shah, et al., “CDP-choline and galantamine, a personalized α7 nicotinic acetylcholine receptor targeted treatment for the modulation of speech MMN indexed deviance detection in healthy volunteers: a pilot study,” Psychopharmacology (Berl.), https://doi.org/10.1007/s00213-020-05646-1.

  14. J. Choueiry, C. M. Blais, D. Shah, et al., “Combining CDP-choline and galantamine: Effects of a selective α7 nicotinic acetylcholine receptor agonist strategy on P50 sensory gating of speech sounds in healthy volunteers,” J. Psychopharmacol., 33, No. 6, 688–699 (2019), PMID: 30920339, https://doi.org/10.1177/0269881119836217.

  15. S. I. Deutsch, B. L. Schwartz, N. R. Schooler, et al., “Targeting alpha-7 nicotinic neurotransmission in schizophrenia: a novel agonist strategy,” Schizophr. Res., 148, No. 1–3, 138–144 (2013), PMID: 23768813, https://doi.org/10.1016/j.schres.2013.05.023.

  16. E. Hamurtekin, D. Bagdas, and M. S. Gurun, “Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats,” Neurosci. Lett., 420, No. 2, 116–121 (2007), https://doi.org/10.1016/j.neulet.2007.04.058.

    Article  CAS  PubMed  Google Scholar 

  17. G. B. Weiss, “Metabolism and actions of CDP-choline as an endogenous compound and administered exogenously as citicoline,” Life Sci., 56, No. 9, 637–660 (1995), PMID: 7869846, https://doi.org/10.1016/0024-3205(94)00427-t.

  18. R. Giménez, J. Raïch, and J. Aguilar, “Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice,” Br. J. Pharmacol., 104, No. 3, 575–578 (1991), PMID: 1839138, https://doi.org/10.1111/j.1476-5381.1991.tb12471.x.

  19. C. Saligaut, M. Daoust, N. Moore, and F. Boismare, “Effects of hypoxia and cytidine (5’)diphosphocholine on the concentrations of dopamine, norepinephrine and metabolites in rat hypothalamus and striatum,” Arch. Int. Pharmacodyn. Ther., 285, No. 1, 25–33 (1987), PMID: 3579424.

  20. R. Eberhardt, G. Birbamer, F. Gerstenbrand, et al., “Citicoline in the treatment of Parkinson’s disease,” Clin. Ther., 12, No. 6, 489–495 (1990), PMID: 2289218.

  21. J. Agut, J. A. Ortiz, and R. J. Wurtman, “CDP-choline modulates dopamine-evoked K-release in striatum,” Ann. N. Y. Acad. Sci., 920, 332–335 (2000), https://doi.org/10.1111/j.1749-6632.2000.tb06944.x.

    Article  CAS  PubMed  Google Scholar 

  22. K. Radad, G. Gille, J. Xiaojing, et al., “CDP-choline reduces dopaminergic cell loss induced by MPP(+) and glutamate in primary mesencephalic cell culture,” Int. J. Neurosci., 117, No. 7, 985–998 (2007), PMID: 17613109, https://doi.org/10.1080/10623320600934341.

  23. M. Martinet, P. Fonlupt, and H. Pacheco, “Effects of cytidine-5’ diphosphocholine on norepinephrine, dopamine and serotonin synthesis in various regions of the rat brain,” Arch. Int. Pharmacodyn. Ther., 239, No. 1, 52–61 (1979), PMID: 485720.

  24. O. A. Gromova, I. Yu. Torshin, M. V. Putilina, et al., “Selection of neuroprotective therapy in patients with chronic cerebral ischemia taking into account the synergism of drug interactions,” Zh. Nevrol. Psikhiatr., 120, No. 8, 42–50 (2020), https://doi.org/10.17116/jnevro202012008142.

  25. C. Zazueta, M. Buelna-Chontal, A. Macías-López, et al., “Cytidine-5’-diphosphocholine protects the liver from ischemia/reperfusion injury preserving mitochondrial function and reducing oxidative stress,” Liver Transpl., 24, No. 8, 1070–1083 (2018), https://doi.org/10.1002/lt.25179 PMID: 29679463.

  26. I. Yu. Torshin, O. A. Gromova, and Zh. D. I. Kobalava, “Repression of ω-3 polyunsaturated fatty acids by adherents of evidence-based medicine,” Farmakoekon. Sovrem. Farmakoekon. Farmakoepidemiol., 12, No. 2, 91–114 (2019), https://doi.org/10.17749/2070-4909.2019.12.2.91-114.

    Article  Google Scholar 

  27. M. Buelna-Chontal, M. Franco, L. Hernández-Esquivel, et al., “CDP-choline circumvents mercury-induced mitochondrial damage and renal dysfunction,” Cell Biol. Int., 41, No. 12, 1356–1366 (2017), https://doi.org/10.1002/cbin.10871.

    Article  CAS  PubMed  Google Scholar 

  28. M. Gutiérrez-Fernández, M. A. Leciñana, B. Rodríguez-Frutos, et al., “CDP-choline at high doses is as effective as i.v. thrombolysis in experimental animal stroke,” Neurol Res., 34, No. 7, 649–656 (2012), https://doi.org/10.1179/1743132812Y.0000000058.

    Article  CAS  PubMed  Google Scholar 

  29. D. Bagdas, F. A. Sonat, E. Hamurtekin, et al., “The antihyperalgesic effect of cytidine-5’-diphosphate-choline in neuropathic and inflammatory pain models,” Behav. Pharmacol., 22, No. 5–6, 589–598 (2011), PMID: 21836465, https://doi.org/10.1097/FBP.0b013e32834a1efb.

  30. M. S. Gurun, R. Parker, J. C. Eisenach, and M. Vincler, “The effect of peripherally administered CDP-choline in an acute inflammatory pain model: the role of alpha7 nicotinic acetylcholine receptor,” Anesth. Analg., 108, No. 5, 1680–1687 (2009), https://doi.org/10.1213/ane.0b013e31819dcd08.

    Article  CAS  PubMed  Google Scholar 

  31. K. Rejdak, R. Rejdak, M. Sieklucka-Dziuba, et al., “The effects of citicoline and/or MK-801 on survival, neurological and behavioral outcome of mice exposed to transient hyperglycemia and oligemic hypoxia,” Eur Neuropsychopharmacol., 11, No. 5, 333–341 (2001), PMID: 11597819, https://doi.org/10.1016/s0924-977x(01)00107-9.

  32. M. Y. Martynov and E. I. Gusev, “Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke,” J. Exp. Pharmacol., 7, 17–28. eCollection 2015 (2015), PMID: 27186142, https://doi.org/10.2147/JEP.S63544.

  33. A. Abdolmaleki, A. Moghimi, M. B. Ghayour, and M. B. Rassouli, “Evaluation of neuroprotective, anticonvulsant, sedative and anxiolytic activity of citicoline in rats,” Eur. J. Pharmacol., 789, 275–279 (2016), PMID: 27475676, https://doi.org/10.1016/j.ejphar.2016.07.048.

  34. M. Gutiérrez-Fernández, B. Rodríguez-Frutos, B. Fuentes, and M. T. Vallejo-Cremades, “CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke,” Neurochem. Int., 60, No. 3, 310–317 (2012), https://doi.org/10.1016/j.neuint.2011.12.015.

    Article  CAS  PubMed  Google Scholar 

  35. M. K. Başkaya, A. Doğan, A. M. Rao, and R. J. Dempsey, “Neuroprotective effects of citicoline on brain edema and blood–brain barrier breakdown after traumatic brain injury,” J. Neurosurg., 92, No. 3, 448–452 (2000), PMID: 10701532, https://doi.org/10.3171/jns.2000.92.3.0448.

  36. J. H. Kim, B. Y. Choi, A. R. Kho, et al., “Acetylcholine precursor, citicoline (cytidine 5’-diphosphocholine), reduces hypoglycaemia-induced neuronal death in rats,” J. Neuroendocrinol., 30, No. 1, 21–29 (2018), https://doi.org/10.1111/jne.12567.

    Article  CAS  Google Scholar 

  37. M. M. Silveri, J. Dikan, A. J. Ross, et al., “Citicoline enhances frontal lobe bioenergetics as measured by phosphorus magnetic resonance spectroscopy,” NMR Biomed., 21, No. 10, 1066–1075 (2008), https://doi.org/10.1002/nbm.1281.

    Article  CAS  PubMed  Google Scholar 

  38. A. Hosseini-Sharifabad, M. Rabbani, Y. Seyed-Yousefi, and M. Safavi, “Magnesium increases the protective effect of citicoline on aluminum chloride-induced cognitive impairment,” Clin. Psychopharmacol. Neurosci., 18, No. 2, 241–248 (2020), https://doi.org/10.9758/cpn.2020.18.2.241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Krupinski, I. Ferrer, M. Barrachina, et al., “CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specifi c PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat,” Neuropharmacology, 42, No. 6, 846–854 (2002), https://doi.org/10.1016/s0028-3908(02)00032-1.

    Article  CAS  PubMed  Google Scholar 

  40. K. Takasaki, K. Uchida, R. Fujikawa, et al., “Neuroprotective effects of citidine-5-diphosphocholine on impaired spatial memory in a rat model of cerebrovascular dementia,” J. Pharmacol. Sci., 116, No. 2, 232–237 (2011), https://doi.org/10.1254/jphs.11013fp.

    Article  CAS  PubMed  Google Scholar 

  41. R. M. Adibhatla and J. F. Hatcher, “Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia,” J. Neurosci. Res., 73, No. 3, 308–315 (2003), PMID: 12868064, https://doi.org/10.1002/jnr.10672.

  42. J. Krupinski, M. Slevin, and L. Badimon, “Citicoline inhibits MAP kinase signalling pathways after focal cerebral ischaemia,” Neurochem. Res., 30, No. 8, 1067–1073 (2005).

    Article  CAS  Google Scholar 

  43. J. Krupinski, M. Abudawood, S. Matou-Nasri, et al., “Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1,” Vasc. Cell, 4, No. 1, 20 (2012), PMID: 23227823, https://doi.org/10.1186/2045-824X-4-20.

  44. O. Hurtado, M. Hernández-Jiménez, J. G. Zarruk, et al., “Citicoline (CDP-choline) increases Sirtuin1 expression concomitant to neuroprotection in experimental stroke,” J. Neurochem., 126, No. 6, 819–826 (2013), PMID: 23600725, https://doi.org/10.1111/jnc.12269.

  45. C. Sun, F. Zhang, X. Ge, et al., “SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B,” Cell Metab., 6, No. 4, 307–319 (2007), PMID: 17908559, https://doi.org/10.1016/j.cmet.2007.08.014.

  46. E. Aslan, H. Kocaeli, A. Bekar, et al., “CDP-choline and its endogenous metabolites, cytidine and choline, promote the nerve regeneration and improve the functional recovery of injured rat sciatic nerves,” Neurol Res., 33, No. 7, 766–773 (2011), PMID: 21756558, https://doi.org/10.1179/1743132811Y.0000000004.

  47. T. Oshitari, N. Yoshida-Hata, and S. Yamamoto, “Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose,” Brain Res., 1346, 43–51 (2010), https://doi.org/10.1016/j.brainres.2010.05.073.

    Article  CAS  PubMed  Google Scholar 

  48. V. Rema, K. K. Bali, R. Ramachandra, et al., “CDP-choline in early life induces stable increase in dendritic complexity of neurons in the somatosensory cortex of adult rats,” Neuroscience, 155, No. 2, 556–564 (2008), https://doi.org/10.1016/j.neuroscience.2008.04.017.

    Article  CAS  PubMed  Google Scholar 

  49. P. Fogagnolo, E. Melardi, L. Tranchina, and L. Rossetti, “Topical citicoline and vitamin B12 versus placebo in the treatment of diabetes-related corneal nerve damage: a randomized double-blind controlled trial,” BMC Ophthalmol., 20, No. 1, 315 (2020), https://doi.org/10.1186/s12886-020-01584-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. Gandolfi , G. Marchini, A. Caporossi, et al., “Cytidine 5’-diphosphocholine (citicoline, evidence for a neuroprotective role in glaucoma,” Nutrients, 12, No. 3, 793 (2020), PMID: 32197303, https://doi.org/10.3390/nu12030793.

  51. E. A. Luzhnikov (ed.), Medical Toxicology. National Guidelines, GEOTAR-Media (2012).

  52. L. A. Horrocks, R. V. Dorman, Z. Dabrowiecki, et al., “CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia,” Prog. Lipid Res., 20, 531–534 (1981), PMID: 7342106, https://doi.org/10.1016/0163-7827(81)90093-x.

  53. C. O’Dwyer, R. Yaworski, S. Katsumura, et al., “Hepatic choline transport is inhibited during fatty acid-induced lipotoxicity and obesity,” Hepatol. Commun., 4, No. 6, 876–889 (2020), https://doi.org/10.1002/hep4.1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y. Liu, W. Wang, G. Shui, and X. Huang, “CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway,” PLoS Genetics, 10, No. 3, e1004172, eCollection 2014 Mar (2014), https://doi.org/10.1371/journal.pgen.1004172.

  55. J. J. Zhao, Y. Liu, X. L. Chen, et al., “Effect of citicoline on spatial learning and memory of rats after focal cerebral ischemia,” Nan Fang Yi Ke Da Xue Xue Bao, 26, No. 2, 174–176 (2006), PMID: 16503522.

  56. J. Alvarez-Sabín and G. C. Román, “The role of citicoline in neuroprotection and neurorepair in ischemic stroke,” Brain Sci., 3, No. 3, 1395–1414 (2013), https://doi.org/10.3390/brainsci3031395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. V. V. Mashin, L. A. Belova, E. M. Dudikov, et al., “The efficacy of Recognan in the acute stage of ischemic stroke,” Zh. Nevrol. Psikhiatr., 117, No. 10, 44–48 (2017) (2017), MID: 29171488, https://doi.org/10.17116/jnevro201711710144-48.

  58. H. J. Cho and Y. J. Kim, “Efficacy and safety of oral citicoline in acute ischemic stroke: drug surveillance study in 4,191 cases,” Methods Find. Exp. Clin. Pharmacol., 31, No. 3, 171–176 (2009), PMID: 19536360, https://doi.org/10.1358/mf.2009.31.3.1364241.

  59. J. Alvarez-Sabín, E. Santamarina, O. Maisterra, et al., “Long-term treatment with citicoline prevents cognitive decline and predicts a better quality of life after a first ischemic stroke,” Int. J. Mol. Sci., 17, No. 3, 390 (2016), https://doi.org/10.3390/ijms17030390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. J. Secades, J. Alvarez-Sabín, J. Castillo, et al., “Citicoline for acute ischemic stroke: A systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials,” J. Stroke Cerebrovasc. Dis., 25, No. 8, 1984–1996 (2016), https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.04.010.

    Article  PubMed  Google Scholar 

  61. V. V. Mashin, L. A. Belova, I. R. Bakhtogarimov, et al., “A multicenter observational program for evaluation of the efficacy of Recognan (citicoline) in the correction of cognitive impairment in patients with chronic cerebrovascular patholog,” Zh. Nevrol. Psikhiatr., 117, No. 8, 39–43 (2017), PMID: 28884715, https://doi.org/10.17116/jnevro20171178139-43.

  62. X. A. Alvarez, M. Laredo, D. Corzo, et al., “Citicoline improves memory performance in elderly subjects,” Methods Find. Exp. Clin. Pharmacol., 19, No. 3, 201–210 (1997), PMID: 9203170.

  63. S. A. Nemkova, D. V. Semenov, E. A. Petrova, et al., “Cognitive and emotional disorders in university students and teachers: the possibility of treatment with Recognan (citicoline),” Zh. Nevrol. Psikhiatr., 118, No. 12, 11–18 (2018), https://doi.org/10.17116/jnevro201811812111.

  64. X. A. Alvarez, R. Mouzo, V. Pichel, et al., “Double-blind placebo-controlled study with citicoline in APOE genotyped Alzheimer’s disease patients. Effects on cognitive performance, brain bioelectrical activity and cerebral perfusion,” Methods Find. Exp. Clin. Pharmacol., 21, No. 9, 633–644 (1999).

    CAS  PubMed  Google Scholar 

  65. B. L. C. Piamonte, A. I. Espiritu, and V. M. M. Anlacan, “Effects of Citicoline as an adjunct treatment for Alzheimer’s Disease,” J. Alzheimers Dis., 76, No. 2, 725–732 (2020), https://doi.org/10.3233/JAD-200378.

    Article  CAS  PubMed  Google Scholar 

  66. E. Yu. Solov’eva, A. N. Karneev, A. V. Chekanov, and O. A. Baranova, “The individual and combined antioxidant effects of citicoline and ethylmethylhydroxypyridine succinate,” Zh. Nevrol. Psikhiatr., 116, No. 11, 78–85 (2016), https://doi.org/10.17116/jnevro201611611178-85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gromova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 121, No. 5, Iss. 1, pp. 88–97, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromova, O.A., Torshin, I.Y., Grishina, T.R. et al. Molecular and Clinical Aspects of the Action of Cytidine Diphosphocholine on Cognitive Functions. Neurosci Behav Physi 52, 347–355 (2022). https://doi.org/10.1007/s11055-022-01247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01247-x

Keywords

Navigation