Skip to main content
Log in

Influence of histone deacetylases inhibitor sodium butyrate on hippocampal neuronal activity in vivo

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Epigenetic regulation plays an important role in cognitive brain functions. The increase in histone acetylation by histone deacetylase inhibitors, such as sodium butyrate, was shown previously to be highly correlated with memory enhancement. Currently, the data on sodium butyrate effects on neuronal activity in vivo are limited. This study investigates how sodium butyrate affects the activity of CA1 hippocampal neurons in freely behaving mice. We performed in vivo calcium imaging of CA1 neurons with miniscopes in mice during arena exploration trials. The first trial was followed by an intraperitoneal injection of sodium butyrate or saline. After 45 and 90 minutes, CA1 neurons were recorded again in the homecage. The second trial was made 24 hours later. The injection of sodium butyrate resulted in immediate inhibition of neuronal activity for the following 90 minutes. However, the population activity analysis revealed that neurons that were active in the first behavioral trial demonstrated significantly more correlated activity during the second trial in the sodium butyrate group, but not in the saline group. Thus, for the first time, we demonstrated the effects of sodium butyrate on neuronal activity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Aharoni D, Hoogland TM (2019) Circuit investigations with open-source miniaturized microscopes: Past, present and future. Front Cell Neurosci 13:1–12. https://doi.org/10.3389/fncel.2019.00141

    Article  Google Scholar 

  2. Balaban PM, Borodinova AA (2019) Neurogenetic Technologies of Memory Maintenance Investigation. Russian Journal of Physiology. 105(11): 1392–1405. https://doi.org/10.1134/S0869813919110025

    Article  Google Scholar 

  3. Blank M, Werenicz A, Velho LA, Pinto DF, Fedi AC, et al. (2015) Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neurosci Lett 594:76–81. https://doi.org/10.1016/j.neulet.2015.03.059

    Article  CAS  PubMed  Google Scholar 

  4. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al. (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. https://doi.org/10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chistiakova M, Bannon NM, Bazhenov M, Volgushev M. (2014) Heterosynaptic plasticity: Multiple mechanisms and multiple roles. Neuroscientist 20(5):483–98. https://doi.org/10.1177/1073858414529829

    Article  PubMed  PubMed Central  Google Scholar 

  6. Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P (2003). Chromatin remodeling and neuronal response: Multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 116(24):4905–14. https://doi.org/10.1242/jcs.00804

    Article  CAS  PubMed  Google Scholar 

  7. Daniel P, Brazier M, Cerutti I, Pieri F, Tardivel I, et al. (1989) Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clin Chim Acta 181(3):255–63. https://doi.org/10.1016/0009-8981(89)90231-3

    Article  CAS  PubMed  Google Scholar 

  8. Dash PK, Orsi SA, Moore AN (2009) Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience 163(1):1–8. https://doi.org/10.1016/j.neuroscience.2009.06.028

    Article  CAS  PubMed  Google Scholar 

  9. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447(7141):178–82. https://doi.org/10.1038/nature05772

    Article  CAS  PubMed  Google Scholar 

  10. Fontán-Lozano Á, Romero-Granados R, Troncoso J, Múnera A, Delgado-García JM, Carrión ÁM (2008) Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci 39(2):193–201. https://doi.org/10.1016/j.mcn.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  11. Gagliano H, Delgado-Morales R, Sanz-Garcia A, Armario A (2014) High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response. Neuropharmacology 79:75–82. https://doi.org/10.1016/j.neuropharm.2013.10.031

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y, et al. (2011) Miniaturized integration of a fluorescence microscope. Nat Methods 8(10):871–78. https://doi.org/10.1038/nmeth.1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hagberg A, Schult D, Swart P (2008) Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux G, Vaught T, Millman J (Eds.) Proceedings of the 7th Python in Science conference (SciPy),  pp. 11–15

  14. Hamodeh SA, Rehn M, Haschke G, Diener M (2004) Mechanism of butyrate-induced hyperpolarization of cultured rat myenteric neurones. Neurogastroenterol Motil 16(5):597–604. https://doi.org/10.1111/j.1365-2982.2004.00545.x

    Article  CAS  PubMed  Google Scholar 

  15. Haschke G, Schäfer H, Diener M (2002) Effect of butyrate on membrane potential, ionic currents and intracellular ca2+ concentration in cultured rat myenteric neurones. Neurogastroenterol Motil 14(2):133–42. https://doi.org/10.1046/j.1365-2982.2002.00312.x

    Article  CAS  PubMed  Google Scholar 

  16. Intlekofer KA, Berchtold NC, Malvaez M, Carlos AJ, McQuown SC, et al. (2013) Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38(10):2027–34. https://doi.org/10.1038/npp.2013.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang Y, Li K, Li X, Xu L, Yang Z (2021) Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem Biol Interact 341:109452. https://doi.org/10.1016/j.cbi.2021.109452

    Article  CAS  PubMed  Google Scholar 

  18. Jimenez JC, Berry JE, Lim SC, Ong SK, Kheirbek MA, Hen R (2020) Contextual fear memory retrieval by correlated ensembles of ventral CA1 neurons. Nat Commun 11(1):1–11. https://doi.org/10.1038/s41467-020-17270-w

    Article  CAS  Google Scholar 

  19. Lattal KM, Barrett RM, Wood MA (2007) Systemic or Intrahippocampal Delivery of Histone Deacetylase Inhibitors Facilitates Fear Extinction. Behav Neurosci 121(5):1125–31. https://doi.org/10.1037/0735-7044.121.5.1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279(39):40545–59. https://doi.org/10.1074/jbc.M402229200

    Article  CAS  PubMed  Google Scholar 

  21. Liu YZ, Wang Y, Shen W, Wang Z (2017) Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory. J Physiol 595(15):5327–40. https://doi.org/10.1113/JP274212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu J, Li C, Singh-Alvarado J, Zhou ZC, Fröhlich F, et al. (2018) MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. Cell Rep 23(12):3673–84. https://doi.org/10.1101/311548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–39. https://doi.org/10.1038/266737a0

    Article  CAS  PubMed  Google Scholar 

  24. Modi MN, Dhawale AK, Bhalla US (2014) CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning. Elife 2014(3):1–25. https://doi.org/10.7554/eLife.01982

    Article  Google Scholar 

  25. Pandey K, Sharma KP, Sharma SK (2015) Histone deacetylase inhibition facilitates massed pattern-induced synaptic plasticity and memory. Learn Mem 22(10):514–18. https://doi.org/10.1101/lm.039289.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roozendaal B, Hernandez A, Cabrera SM, Hagewoud R, Malvaez M, et al. (2010) Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci 30(14):5037–46. https://doi.org/10.1523/JNEUROSCI.5717-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rupprecht P, Carta S, Hoffmann A, Echizen M, Blot A, et al. (2021) A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging. Nat Neurosci 24(9):1324–37. https://doi.org/10.1038/s41593-021-00895-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: An open-source platform for biological-image analysis. Nat Methods 9(7):676–82. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  29. Schober AL, Gagarkin DA, Chen Y, Gao G, Jacobson L, Mongin AA (2016) Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo. Front Cell Neurosci 10:262. https://doi.org/10.3389/fncel.2016.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schroeder FA, Lin CL, Crusio WE, Akbarian S (2007) Antidepressant-Like Effects of the Histone Deacetylase Inhibitor, Sodium Butyrate, in the Mouse. Biol Psychiatry 62(1):55–64. https://doi.org/10.1016/j.biopsych.2006.06.036

    Article  CAS  PubMed  Google Scholar 

  31. Sheintuch L, Rubin A, Brande-Eilat N, Geva N, Sadeh N, et al. (2017) Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data. Cell Rep 21(4):1102–15. https://doi.org/10.1016/j.celrep.2017.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh P, Thakur MK (2018) Histone Deacetylase 2 Inhibition Attenuates Downregulation of Hippocampal Plasticity Gene Expression during Aging. Mol Neurobiol 55(3):2432–42. https://doi.org/10.1007/s12035-017-0490-x

    Article  CAS  PubMed  Google Scholar 

  33. Stafford JM, Raybuck JD, Ryabinin AE, Lattal KM (2012) Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol Psychiatry 72(1):25–33. https://doi.org/10.1016/j.biopsych.2011.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sui L, Wang Y, Ju LH, Chen M (2012) Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem 97(4):425–40. https://doi.org/10.1016/j.nlm.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  35. Villain H, Florian C, Roullet P (2016) HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci Rep 6(May):1–9. https://doi.org/10.1038/srep27015

    Article  CAS  Google Scholar 

  36. Vinarskaya AK, Balaban PM, Roshchin M V., Zuzina AB (2021) Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol Learn Mem 180:107414. https://doi.org/10.1016/j.nlm.2021.107414

    Article  CAS  PubMed  Google Scholar 

  37. Xu Y, Peng S, Cao X, Qian S, Shen S, et al. (2021) High doses of butyrate induce a reversible body temperature drop through transient proton leak in mitochondria of brain neurons. Life Sci 278:119614. https://doi.org/10.1016/j.lfs.2021.119614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant of the Russian Science Foundation number 19-75-10067.

We thank Anna Gruzdeva and Walter Bast for editing the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Roshchina.

Ethics declarations

The authors declare that they have no competing financial or personal relationships that could have appeared to influence the work reported in this paper.

All data are available in the main text. Related data are available from the corresponding author on request.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshchina, M.A., Borodinova, A.A. & Roshchin, M.V. Influence of histone deacetylases inhibitor sodium butyrate on hippocampal neuronal activity in vivo. Neurosci Behav Physi 52, 769–777 (2022). https://doi.org/10.1007/s11055-022-01240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01240-4

Keywords

Navigation