Skip to main content
Log in

BDNF and Senile Cognitive Decline

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Age-related impairments to the ability to perceive, store, and use novel information are under intense study in a number of animal species and humans. Cognitive defi cit in normal and pathological aging may result from impairments to the regulation of the transcription, translation, reception, and signaling of brain-derived neurotrophic factor (BDNF), which is key molecule involved in learning and memory processes, which are important cognitive components with the greatest vulnerability in aging. This brief review addresses current concepts of the involvement of the BDNF system in forming cognitive status in the adult and aging brain. Some current pharmacological and non-medication-based approaches stimulating BDNF expression and/or acting on the corresponding signal cascades, which have been confi rmed in experimental models and which may be useful or are already used in cognitive geriatrics, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agapova, T. Y., Agniulin, Y. V., Silachev, D. N., et al., “Time course of the expression of genes of brain-derived neurotrophic factor and nerve growth factor in the hippocampus and frontal cortex induced by semax in rats,” Mol. Gen. Mikrobiol. Virusol., 23, No. 3, 142–146 (2008).

    Google Scholar 

  • Alcalá-Barraza, S. R., Lee, M. S., Hanson, L. R., et al., “Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS,” J. Drug Target, 18, No. 3, 179–190 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Autio, H., Matlik, K., Rantamaki, T., et al., “Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus,” Neuropharmacology, 61, 1291–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avcuoglu, S., Wygrecka, M., Marsh, L. M., et al., “Neurotrophic tyrosine kinase receptor B/neurotrophin 4 signaling axis is perturbed in clinical and experimental pulmonary fi brosis,” Am. J. Respir. Cell Mol. Biol., 45, 768–780 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, P., Mattison, J. A., and Anderson, R. M., “Nutrition, metabolism, and targeting aging in nonhuman primates,” Ageing Res. Rev., 39, 29–35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baranova, K. A., Rybnikova, E. A., and Samoilov, M. O., “The neurotrophin BDNF is involved in the development and prevention of stress-induced psychopathologies,” Neurochem. J., 9, 108–115 (2015).

    Article  CAS  Google Scholar 

  • Barrientos, R. M., Kitt, M. M., Watkins, L. R., and Maier, S. F., “Neuroinfl am mation in the normal aging hippocampus,” Neurosci., 309, 84–99 (2015).

    Article  CAS  Google Scholar 

  • Belyakov, A. V. and Semenov, D. G., “Stimulation of cognitive abilities in aged macaques via moderate hypobaric hypoxia,” Adv. Gerontol., 9, No. 2, 190–196 (2019).

    Article  Google Scholar 

  • Belyakov, A. V. and Semenov, D. G., “The PI3K/Akt system is involved in the neuroprotective preconditioning of rats with moderate hypobaric hypoxia,” Neurochem. J., 11, 213–220 (2017).

    Article  CAS  Google Scholar 

  • Benko, J. and Vranková, S., “Natural psychoplastogens as antidepressant agents,” Molecules, 25, No. 5, 1172 (2020).

  • Bherer, L., Erickson, K. I., and Liu-Ambrose, T., “A review of the effects of physical activity and exercise on cognitive and brain functions in older adults,” J. Aging Res., 2013, ID 657508 (2013).

  • Brown, D. T., Vickers, J. C., Stuart, K. E., et al., “The BDNF Val66Met polymorphism modulates resilience of neurological functioning to brain ageing and dementia: a narrative review,” Brain Sci., 10, No. 4, 195–211 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  • Bucci, C., Alifano, P., and Cogli, L., “The role of rab proteins in neuronal cells and in the traffi cking of neurotrophin receptors,” Membranes, 4, 642–677 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Budni, J., “The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease,” Aging Dis., 6, No. 5, 331–341 (2016).

    Google Scholar 

  • Castonguay, D., Dufort-Gervais, J., Ménard, C., et al., “The tyrosine phosphatase STEP is involved in age-related memory decline,” Curr. Biol., 28, No. 7, 1079–1089 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattaneo, A., Cattane, N., Begni, V., et al., “The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders,” Transl. Psychiatry, 6, No. 11, e958 (2016).

  • Cazorla, M., Jouvenceau, A., Rose, C., et al., “Cyclotraxin-B, the fi rst highly potent and selective TrkB inhibitor, has anxiolytic properties in mice,” PLoS One, 5, e9777 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, E. S., Ernst, C., and Turecki, G., “The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression,” Int. J. Neuropsychopharmacol., 14, 427–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Xin, G. Z. Y., Getachew, H., et al., “Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor,” Sci. Rep., 6, 28599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chieffi , S., Messina, G., Villano, I., et al., “Neuroprotective effects of physical activity: evidence from human and animal studies,” Front. Neurol., 8,188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Churilova, A. and Samoilov, M., “The effect of different modes of hypobaric hypoxia on the expression of transcription factor pCREB and pro-survival proteins BDNF and BCL-2 in rat neocortex and hippocampus,” Springerplus, 4, Suppl. 1, L27 (2015).

  • Cocco, S., Podda, M. V., and Grassi, C., “Role of BDNF signaling in memory enhancement induced by transcranial direct current stimulation,” Front. Neurosci., 12, 427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook, D. J., Nguyen, C., Chun, H. N., et al., “Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke,” J. Cereb. Blood Flow Metab., 37, No. 3, 1030–1045 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Diniz, B. S., Reynolds, C. F., 3rd, Begley, A., et al., “Brain-derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study,” J. Psychiatr. Res., 49, 96–101 (2014).

    Article  PubMed  Google Scholar 

  • Esvald, E. E., Tuvikene, J., Sirp, A., et al., “CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons,” J. Neurosci., 40, No. 7, 1405–1426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher, J. M. and Hughes, R. A., “Novel monocyclic and bicyclic loop mimetics of brain-derived neurotrophic factor,” J. Pept. Sci., 12, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Friedman, W. J., “Proneurotrophins, seizures, and neuronal apoptosis,” Neurosci., 16, 244–252 (2010).

    CAS  Google Scholar 

  • Fuchikami, M., Morinobu, S., Kurata, A., et al., “Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus,” Int. J. Neuropsychopharmacol., 12, No. 1, 73–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Gomazkov, O. A., “Brain Aging and Neurotrophic Therapy, IKAR, Moscow (2011), pp 41–68.

  • Gudasheva, T. A., Konstantinopolsky, M. A., Tarasiuk, A. V., et al., “Dipeptide mimetic of the BDNF loop 4 possesses analgetic activity,” Dokl. Biochem. Biophys., 485, 123–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gudasheva, T. A., Tarasiuk, A. V., Sazonova, N. M., et al., “A novel dimeric dipeptide mimetic of the BDNF selectively activates the MAPK-Erk signaling pathway,” Dokl. Biochem. Biophys., 476, 291–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Gupta, V. K., You, Y., Gupta, V. B., et al., “TrkB receptor signaling: implications in neurodegenerative, psychiatric and proliferative disorders,” Int. J. Mol. Sci., 14, No. 5, 10122–10142 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • He, J., Xiang, Z., Zhu, X., et al., “Neuroprotective effects of 7,8-dihydroxyfl avone on midbrain dopaminergic neurons in MPP+-treated monkeys,” Sci. Rep., 12, No. 6, 34 (2016).

  • He, X. P., Pan, E., Sciarretta, C., et al., “Disruption of TrkB-mediated phospholipase Cγ signaling inhibits limbic epileptogenesis,” J. Neurosci., 30, No. 18, 6188–6196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempstead, B. L., “Brain-derived neurotrophic factor: three ligands, many actions,” Trans. Am. Clin. Climatol. Assoc., 126, 9–19 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Ho, R., Minturn, J. E., Simpson, A. M., et al., “The effect of P75 on Trk receptors in neuroblastomas,” Cancer Lett., 305, 76–85 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer, M., Pagliusi, S. R., Hohn, A., et al., “Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain,” EMBO J., 9, 2459–2464 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, E. J., McCord, A. E., and Greenberg, M. E., “A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition,” Neuron, 60, 610–624 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, S. W., Liu, X., Chan, C. B., et al., “Deoxygedunin, a natural product with potent neurotrophic activity in mice,” PLoS One, 5, No. 7, e11528 (2010).

  • Jethwa, N., Chung, G. H., Lete, M. G., et al., “Endomembrane PtdIns(3,4,5) P3 activates the PI3K-Akt pathway,” J. Cell Sci., 128, No. 18, 3456–3465 (2015).

    CAS  PubMed  Google Scholar 

  • Ji, R., Smith, M., Niimi, Y., et al., “Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson’s disease mouse model,” Sci. Rep., 9, No. 1, 19402 (2019).

  • Keleshian, V. L., Modi, H. R., Rapoport, S. I., and Rao, J. S., “Aging is associated with altered infl ammatory, arachidonic acid cascade, and synaptic markers, infl uenced by epigenetic modifi cations, in the human frontal cortex,” J. Neurochem., 125, 63–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knierim, J. J., Lee, I., and Hargreaves, E. L., “Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory,” Hippocampus, 16, No. 9, 755–764 (2006).

    Article  PubMed  Google Scholar 

  • Kollen, M., Stéphan, A., Faivre-Bauman, A., et al., “Preserved memory capacities in aged Lou/C/Jall rats,” Neurobiol. Aging, 31, No. 1, 129–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kowianski, P., Lietzau, G., Czuba, E., et al., “BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity,” Cell. Mol. Neurobiol., 38, 579–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Leal, S. L. and Yassa, M. A., “Neurocognitive aging and the hippocampus across species,” Trends Neurosci., 38, No. 12, 800–812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, R., Kermani, P., Teng, K. K., and Hempstead, B. L., “Regulation of cell survival by secreted proneurotrophins,” Science, 294, 1945– 1948 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Levada, O. A. and Troyan, A. S., “Major depressive disorder and accelerated aging from a peripheral IGF-1 overexpression perspective,” Med. Hypotheses, 138,109610 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Lipton, J. O. and Sahin, M., “The Neurology of mTOR,” Neuron, 84, No. 2, 275–291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luine, V. and Frankfurt, M., “Interactions between estradiol, BDNF and dendritic spines in promoting memory,” Neurosci., 239, 34–45 (2013).

    Article  CAS  Google Scholar 

  • Maynarda, K. R., Hobbsa, J. W., Sukumara, M., et al., “Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus,” Brain Struct. Funct., 222, No. 7, 3295–3307 (2017).

    Article  Google Scholar 

  • Meinzer, M., Lindenberg, R., Antonenko, D., et al., “Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes,” J. Neurosci., 33, No. 30, 12,470–12,478 (2013).

  • Meng, L., Liu, B., Ji, R., et al., “Targeting the BDNF/TrkB pathway for the treatment of tumors (Review),” Oncol. Lett., 17, 2031–2039 (2019).

    CAS  PubMed  Google Scholar 

  • Miranda, M., Morici, J. F., Zanoni, M. B., and Bekinschtein, P., “Brainderived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain front cell,” Neurosci., 13, 363 (2019).

    CAS  Google Scholar 

  • Moon, H. Y., Becke, A., Berron, D., et al., “Running-induced systemic cathepsin B secretion is associated with memory function,” Cell Metab., 24, No. 2, 332–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moya-Alvarado, G., Gonzalez, A., Stuardo, N., and Bronfman, F. C., “Brain-derived neurotrophic factor (bdnf) regulates Rab5-positive early endosomes in hippocampal neurons to induce dendritic branching,” Front. Cell. Neurosci, 12, 493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahara, A. H., Wilson, B. R., Ivasyk, I., and Kovacs, I., “MR-guided delivery of AAV2-BDNF into the entorhinal cortex of nonhuman primates,” Gene Ther., 25, No. 2, 104–114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima, S., Numakawa, T., Adachi, N., et al., “Self-amplifi ed BDNF transcription is a regulatory system for synaptic maturation in cultured cortical neurons,” Neurochem. Int., 91, 55–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ngwenya, L. B., Heyworth, N. C., Shwe, Y., et al., “Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey,” Front. Syst. Neurosci., 9, 102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Numakawa, T., “Possible protective action of neurotrophic factors and natural compounds against common neurodegenerative diseases,” Neural Regen. Res., 9, No. 16, 1506–1508 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyberg, L., “Functional brain imaging of episodic memory decline in ageing,” J. Intern. Med., 281, No. 1, 65–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Nykjaer, A. and Willnow, T. E., “Sortilin: a receptor to regulate neuronal viability and function,” Trends Neurosci., 35, No. 4, 261–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Oh, H., Lewis, D. A., and Sibille, E., “The role of BDNF in age-dependent changes of excitatory and inhibitory synaptic markers in the human prefrontal cortex,” Neuropsychopharmacology, 41, No. 13, 3080–3091 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shea, A., Cohen, R. A., Porges, E. C., et al., “Cognitive aging and the hippocampus in older adults,” Front. Aging Neurosci., 8, 298 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang, P. T., Teng, H. K., Zaitsev, E., et al., “Cleavage of proBDNF by tPA/ plasmin is essential for long-term hippocampal plasticity,” Science, 306, 487–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Parkhitko, A. A., Favorova, O. O., Khabibullin, D. I., et al., “Kinase mTOR: regulation and role in maintenance of cellular homeostasis, tumor development, and aging,” Biochemistry (Mosc.), 79, 88–101 (2014).

    Article  CAS  Google Scholar 

  • Pattwell, S. S., Bath, K. G., Perez-Castro, R., et al., “The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex,” J. Neurosci., 32, No. 7, 2410–2421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse, R. N., Swendeman, S. L., Li, Y., et al., “A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival,” Blood, 105, 4429–4436 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Robinson, A. A., Abraham, C. R., and Rosene, D. L., “Candidate molecular pathways of white matter vulnerability in the brain of normal aging rhesus monkeys,” Geroscience, 40, No. 1, 31–47 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanczyk, T. B., Weickert, C. S., Webster, M. J., et al., “Alterations in trkB mRNA in the human prefrontal cortex throughout the lifespan,” Eur. J. Neurosci., 15, No. 2, 269–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Romero-Granados, R., Fontán-Lozano, A., Delgado-García, J. M., and Carrión, A. M., “From learning to forgetting: behavioral, circuitry, and molecular properties defi ne the different functional states of the recognition memory trace,” Hippocampus, 20, No. 5, 584–595 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Rudnitskaya, E. A., Kolosova, N. G., and Stefanova, N. A., “Analysis of the contributions of neurotrophic support in the development of signs of Alzheimer’s disease in OXYS rats,” Biokhimiya, 82, No. 3, 460–469 (2017).

    Google Scholar 

  • Ruiz, C. R., Shi, J., and Meffert, M. K., “Transcript specifi city in BDNFregulated protein synthesis,” Neuropharmacology, 76, Pt C (0 0), 657–663 (2014).

  • Rybnikova, E. A. and Samoilov, M. O., “Current concepts of the cerebral mechanisms of hypoxic pre- and postconditioning,” Usp. Fiziol. Nauk., 4, 3–17 (2016).

    Google Scholar 

  • Sambataro, F., Murty, V. P., Lemaitre, H. S., et al., “BDNF modulates normal human hippocampal ageing,” Mol. Psychiatry, 15, No. 2, 116–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samoilov, M., Churilova, A., Gluschenko, T., and Rybnikova, E., “Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats,” Acta Histochem., 116, No. 5, 949–957 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Sasi, M., Vignoli, B., Canossa, M., and Blum, R., “Neurobiology of local and intercellular BDNF signaling,” Pfl ugers Arch., 469, No. 5–6, 593–610 (2017).

    Article  Google Scholar 

  • Shang, Y., Wang, X., Li, F., et al., “rTMS ameliorates prenatal stress-induced cognitive defi cits in male-offspring rats associated with BDNF/TrkB signaling pathway,” Neurorehabil. Neural Repair, 33, No. 4, 271–283 (2019).

    Article  PubMed  Google Scholar 

  • Silhol, M., Arancibia, S., Perrin, D., et al., “Effect of aging on brain-derived neurotrophic factor, proBDNF, and their receptors in the hippocampus of Lou/C rats,” Rejuvenation Res., 11, No. 6, 1031–1040 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Silhol, M., Bonnichon, V., Rage, F., and Tapia-Arancibia, L., “Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats,” Neurosci., 132, No. 3, 613–624 (2005).

    Article  CAS  Google Scholar 

  • Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., et al., “Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults,” Nature, 555, No. 7696, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spalding, K. L., Bergmann, O., Alkass, K., et al., “Dynamics of hippocampal neurogenesis in adult humans,” Cell, 153, No. 6, 1219–1227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk, T., Palm, K., Metsis, M., et al., “Multiple promoters direct tissue-specifi c expression of the rat BDNF gene,” Neuron, 10, 475–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Tongiorgi, E., “Activity-dependent expression of brain-derived neurotrophic factor in dendrites: facts and open questions,” Neurosci. Res., 61, 335–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tyler, W. J., Alonso, M., Bramham, C. R., and Pozzo-Miller, L. D., “From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning,” Learn. Mem., 9, No. 5, 224–237 (2002).

    Article  PubMed  Google Scholar 

  • Vecchio, L. M., Meng, Y., Xhima, K., et al., “The neuroprotective effects of exercise: maintaining a healthy brain throughout aging,” Brain Plast., 4, No. 1, 17–52 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss, M. W., Vivar, C., Kramer, A. F., and van Praag, H., “Bridging animal and human models of exercise-induced brain plasticity,” Trends Cogn. Sci., 17, No. 10, H.525–244 (2013).

  • Wang, J. Q. and Mao, L., “The ERK pathway: molecular mechanisms and treatment of depression,” Mol. Neurobiol., 56, No. 9, 6197–6205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Zhang, S., Ma, H., et al., “Chronic intermittent hypobaric hypoxia pretreatment ameliorates ischemia-induced cognitive dysfunction through activation of ERK1/2-CREB-BDNF pathway in anesthetized mice,” Neurochem. Res., 42, No. 2, 501–512 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Webster, M. J., Herman, M. M., Kleinman, J. E., and Shannon Weickert, C., “BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan,” Gene Expr. Patterns, 6, No. 8, 941–951 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Woo, N. H., Teng, H. K., Siao, C. J., et al., “Activation of p75NTR by pro- BDNF facilitates hippocampal long-term depression,” Nat. Neurosci., 8, 1069–1077 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Yupatov, G. I., Dotsenko, E. A., and Yupatov, Yu. G., “Use of hypobaric adaptation technology in internal diseases medicine (literature review,” Vestnik VGMU, 12, No. 4, 7–18 (2013).

  • Zanin, J. P., Montroull, L. E., Volosin, M., and Friedman, W. J., “The p75 neurotrophin receptor facilitates trkb signaling and function in rat hippocampal neurons,” Front. Cell. Neurosci., 13, 485–495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, Y., Tan, M., Kohyama, J., et al., “Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging,” J. Neurosci., 31, No. 49, 17800–17810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, X. H., Yan, H. C., Zhang, J., et al., “Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats,” J. Neurosci., 30, No. 38, 12653–12663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Semenov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 71, No. 4, pp. 453–467, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, D.G., Belyakov, A.V. BDNF and Senile Cognitive Decline. Neurosci Behav Physi 52, 287–296 (2022). https://doi.org/10.1007/s11055-022-01236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01236-0

Keywords

Navigation