Skip to main content

Advertisement

Log in

EEG Predictors of Therapeutic Responses in Psychiatry

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This literature review presents data on an EEG biomarker for prognostication (predictors) of therapeutic responses in patients with different types of mental pathology. Quantitative electroencephalogram (EEG) indicators recorded before courses of treatment are shown to reflect not only the ongoing functional state of the patient’s brain, but also its adaptive resources in terms of the potential for and magnitude of responses to treatment. The EEG indicators of therapeutic responses found in patients with depression, schizophrenia, and various other mental disorders have quite high predictive capacity, sensitivity, and specificity for identifying responders and nonresponders, and provide qualitative predictions for a patient’s state after treatment courses, and also help the physician select medications for optimum therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yager and R. E. Feinstein, “Potential applications of the National Institute of Mental Health’s Research Domain Criteria (RDoC) to clinical psychiatric practice: How RDoC might be used in assessment, diagnostic processes, case formulation, treatment planning, and clinical notes,” J. Clin. Psychiatry, 78, No. 4, 423–432 (2017), https://doi.org/10.4088/JCP.15nr10476.

    Article  PubMed  Google Scholar 

  2. H. A. Nasrallah, “First Editorial: Biomarkers in neuropsychiatric disorders: Translating research to clinical applications,” Biomarkers Neuropsych., 1, No. 1, 1–3 (2019), https://doi.org/10.1016/j.bionps.2019.100001.

    Article  Google Scholar 

  3. Biomarkers Definitions Working Group, “Biomarkers and surrogate endpoints: preferred definitions and conceptual framework,” Clin. Pharmacol. Ther., 69, No. 3, 89–95 (2001), https://doi.org/10.1067/mcp.2001.113989.

  4. P. McGorry, M. Kesavan, S. Goldstone, et al., “Biomarkers and clinical staging in psychiatry,” World Psychiatry, 13, No. 3, 211–223 (2014), https://doi.org/10.1002/wps.20144.

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. Olbrich, R. van Dinteren, and M. Arns, “Personalized medicine: review and perspectives of promising baseline EEG biomarkers in major depressive disorder and attention deficit hyperactivity disorder,” Neuropsychobiology, 72, 229–240 (2015), https://doi.org/10.1159/000437435.

    Article  CAS  PubMed  Google Scholar 

  6. M. S. Ritsner and I. I. Gottesman, “Where do we stand in the quest for neuropsychiatric biomarkers and endophenotypes and what next?” in: The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes, M. S. Ritsner (ed.), Springer Netherlands (2009), pp. 3–20, https://doi.org/10.1007/978-1-4020-9464-4_1.

  7. World Health Organization, Global Burden of Mental Disorders and the Need for a Comprehensive, Coordinated Response from Health and Social Sectors at the Country Level: Report by the Secretariat (2012), https://apps.who.int/iris/handle/10665/78898, acc. Feb. 24, 2021.

  8. A. Campbell, P. I. Young, D. N. Bateman, et al., “The use of atypical antipsychotics in the management of schizophrenia (review),” Br. J. Clin. Pharmacol., 47, No. 1, 13–22 (1999), https://doi.org/10.1046/j.1365-2125.1999.00849.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Beaumont, “Antipsychotics – the future of schizophrenia treatment,” Curr. Med. Res. Opin., 16, No. 1, 37–42 (2000), https://doi.org/10.1185/0300799009117006.

    Article  CAS  PubMed  Google Scholar 

  10. D. V. Iosifescu, “Electroencephalography-derived biomarkers of antidepressant response,” Harv. Rev. Psychiatry, 19, No. 3, 144–154 (2011), https://doi.org/10.3109/10673229.2011.586549.

    Article  PubMed  Google Scholar 

  11. F. J. McMahon, S. Buervenich, D. Charney, et al., “Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment,” Am. J. Hum. Genet., 78, No. 5, 804–814 (2006), https://doi.org/10.1086/503820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. S. Mayberg, S. K. Brannan, R. K. Mahurin, et al., “Cingulate function in depression: a potential predictor of treatment response,” Neuroreport, 8, No. 4, 1057–1061 (1997), https://doi.org/10.1097/00001756-199703030-00048.

    Article  CAS  PubMed  Google Scholar 

  13. T. Canli, R. E. Cooney, P. Goldin, et al., “Amygdala reactivity to emotional faces predicts improvement in major depression,” Neuroreport, 16, No. 12, 1267–1270 (2005), https://doi.org/10.1097/01.wnr.0000174407.09515.cc.

    Article  PubMed  Google Scholar 

  14. T. M. Itil (ed.), Psychotropic Drugs and the Human EEG, S. Karger (1974), 1st ed., ISBN-13: 978-3805514194.

  15. G. Ulrich, E. Renfordt, G. Zeller, and K. Frick, “Interrelation between changes in the EEG and psychopathology under pharmacotherapy for endogenous depression. A contribution to the predictor question,” Pharmacopsychiatry, 17, No. 6, 178–183 (1984), https://doi.org/10.1055/s-2007-1017433.

    Article  CAS  PubMed  Google Scholar 

  16. G. Ulrich, H. J. Haug, and E. Fähndrich, “Acute vs. chronic EEG effects in maprotiline- and in clomipramine-treated depressive inpatients and the prediction of therapeutic outcome,” J. Affect. Disord., 32, No. 3, 213–217 (1994), https://doi.org/10.1016/0165-0327(94)90020-5.

    Article  CAS  PubMed  Google Scholar 

  17. A. Baskaran, F. Farzan, R. Milev, et al., “The comparative effectiveness of electroencephalographic indices in predicting response to escitalopram therapy in depression: A pilot study,” J. Affect. Disord., 227, 542–549 (2018), https://doi.org/10.1016/j.jad.2017.10.028.

    Article  PubMed  Google Scholar 

  18. S. S. Kandilarova, K. V. Terziyski, A. I. Draganova, et al., “Response to pharmacological treatment in major depression predicted by electroencephalographic alpha power – a pilot naturalistic study,” Folia Med. (Plovdiv), 59, No. 5, 318–325 (2017), https://doi.org/10.1515/folmed-2017-0040.

    Article  CAS  Google Scholar 

  19. V. Knott, C. Mahoney, S. Kennedy, and K. Evans, “Pre-treatment EEG and its relationship to depression severity and paroxetine treatment outcome,” Pharmacopsychiatry, 33, No. 6, 201–205 (2000), https://doi.org/10.1055/s-2000-8356.

    Article  CAS  PubMed  Google Scholar 

  20. G. E. Bruder, J. W. Stewart, C. E. Tenke, et al., “Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant,” Biol. Psychiatry, 49, No. 5, 416–425 (2001), https://doi.org/10.1016/s0006-3223(0001016-7.

    Article  CAS  PubMed  Google Scholar 

  21. G. E. Bruder, J. P. Sedoruk, J. W. Stewart, et al., “Electroencephalographs alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre- and posttreatment findings,” Biol. Psychiatry, 63, No. 12, 1171–1177 (2008), https://doi.org/10.1016/j.biopsych.2007.10.009.

    Article  CAS  PubMed  Google Scholar 

  22. W. Jernajczyk, P. Gosek, M. Latka, et al., “Alpha wavelet power as a biomarker of antidepressant treatment response in bipolar depression,” Adv. Exp. Med. Biol., 968, 79–94 (2017), https://doi.org/10.1007/5584_2016_180.

    Article  PubMed  Google Scholar 

  23. T. S. Mel’nikova, E. E. Tsukarzi, A. V. Kovalev, and S. N. Mosolov, “Spectral characteristics of an electroencephalogram (EEG) as potential biomarkers of the effectiveness of transcranial magnetic stimulation therapy for resistant depression,” Sovrem. Ter. Psikhich. Rasstr., No. 3, 2–8 (2016), https://doi.org/10.21265/PSYPH.2016.38.3547.

  24. B. W. Feenstra and J. Holsheimer, “Dipole-like neuronal sources of theta rhythm in dorsal hippocampus, dentate gyrus and cingulate cortex of the urethane anesthetized rat,” Electroencephalogr. Clin. Neurophysiol., 47, No. 5, 532–538 (1979), https://doi.org/10.1016/0013-4694(79)90254-2.

    Article  CAS  PubMed  Google Scholar 

  25. R. Ishii, K. Shinosaki, S. Ukai, et al., “Medial prefrontal cortex generates frontal midline theta rhythm,” Neuroreport, 10, No. 4, 675–679 (1999), https://doi.org/10.1097/00001756-199903170-00003.

    Article  CAS  PubMed  Google Scholar 

  26. H. Asada, Y. Fukuda, S. Tsunoda, et al., “Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans,” Neurosci. Lett., 274, No. 1, 29–32 (1999), https://doi.org/10.1016/s0304-3940(99)00679-5.

    Article  CAS  PubMed  Google Scholar 

  27. P. Heikman, R. Salmelin, J. P. Makela, et al., “Relation between frontal 3–7 Hz MEG activity and the efficacy of ECT in major depression,” J. ECT, 17, No. 2, 136–140 (2001), https://doi.org/10.1097/00124509-200106000-00009.

    Article  CAS  PubMed  Google Scholar 

  28. D. V. Iosifescu, S. Greenwald, P. Devlin, et al., “Frontal EEG predictors of treatment outcome in major depressive disorder,” Eur. Neuropsychopharmacol., 19, No. 11, 772–777 (2009), https://doi.org/10.1016/j.euroneuro.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  29. M. Arns, M. Etkin, U. Hegerl, et al., “Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?” Eur. Neuropsychopharmacol., 25, No. 8, 1190–1200 (2015), https://doi.org/10.1016/j.euroneuro.2015.03.007.

    Article  CAS  PubMed  Google Scholar 

  30. D. Spronk, M. Arns, K. J. Barnett, et al., “An investigation, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study,” J. Affect. Disord., 128, No. 1–2, 41–48 (2011), https://doi.org/10.1016/j.jad.2010.06.021.

    Article  CAS  PubMed  Google Scholar 

  31. A. S. Korb, A. M. Hunter, A. Cook, and A. F. Leuchter, “Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression,” Clin. Neurophysiol., 120, No. 7, 1313–1319 (2009), https://doi.org/10.1016/j.clinph.2009.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. F. Leuchter, A. Cook, R. B. Lufkin, et al., “Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography,” Neuroimage, 1, No. 3, 208–219 (1994), https://doi.org/10.1006/nimg.1994.1006.

    Article  CAS  PubMed  Google Scholar 

  33. M. Bares, M. Brunovsky, M. Kopecek, et al., “Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study,” J. Psychiatr. Res., 41, No. 3–4, 319–325 (2007), https://doi.org/10.1016/j.jpsychires.2006.06.005.

    Article  PubMed  Google Scholar 

  34. M. Bares, M. Brunovsky, M. Kopecek, et al., “Early reduction in prefrontal thetaQEEG cordance value predicts response to venlafaxine treatment in patients with resistant depressive disorder,” Eur. Psychiatry, 23, No. 5, 350–355 (2008), https://doi.org/10.1016/j.eurpsy.2008.03.001.

    Article  PubMed  Google Scholar 

  35. A. F. Leuchter, A. Cook, W. S. Gilmer, et al., “Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder,” Psychiatry Res., 169, No. 2, 132–138 (2009), https://doi.org/10.1016/j.psychres.2009.04.004.

    Article  CAS  PubMed  Google Scholar 

  36. R. J. Davidson, “Affective style and affective disorders: Perspectives from affective neuroscience,” Cogn. Emot., 12, No. 3, 307–330 (1998), https://doi.org/10.1080/026999398379628.

    Article  Google Scholar 

  37. W. Mumtaz, L. Xia, M. A. Mohd Yasin, et al., “A wavelet-based technique to predict treatment outcome for Major Depressive Disorder,” PLoS One, 12, No. 2, e0171409 (2017), https://doi.org/10.1371/journal.pone.0171409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. E. S. Gokten, E. E. Tulay, B. Beser, et al., “Predictive value of slow and fast EEG oscillations for methylphenidate response in ADHD,” Clin. EEG Neurosci., 50, No. 5, 332–338 (2019), https://doi.org/10.1177/1550059419863206.

    Article  Google Scholar 

  39. S. K. Kar, “Predictors of response to repetitive transcranial magnetic stimulation in depression: A review of recent updates,” Clin. Psychopharmacol. Neurosci., 17, No. 1, 25–33 (2019), https://doi.org/10.9758/cpn.2019.17.1.25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. J. A. Micoulaud-Franchi, R. Richieri, M. Cermolacce, et al., “Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: a preliminary study,” J. Affect. Disord., 137, No. 1–3, 156–160 (2012), https://doi.org/10.1016/j.jad.2011.12.030.

    Article  CAS  PubMed  Google Scholar 

  41. K. Narushima, L. M. McCormick, T. Yamada, et al., “Subgenual cingulate theta activity predicts treatment response of repetitive transcranial magnetic stimulation in participants with vascular depression,” J. Neuropsychiatry Clin. Neurosci., 22, No. 1, 75–84 (2010), https://doi.org/10.1176/jnp.2010.22.1.75.

    Article  PubMed  PubMed Central  Google Scholar 

  42. M. Bares, M. Brunovsky, T. Novak, et al., “QEEG theta cordance in the prediction of treatment outcome to prefrontal repetitive transcranial magnetic stimulation or venlafaxine er in patients with major depressive disorder,” Clin. EEG Neurosci., 46, No. 2, 73–80 (2015), https://doi.org/10.1177/1550059413520442.

    Article  PubMed  Google Scholar 

  43. E. V. Iznak, A. F. Iznak, and I. V. Oleichik, “Quantitative EEG in prediction of efficiency of combined antidepressive treatment including transcranial magnetic stimulation,” Fiziol. Cheloveka, 46, No. 6, 43–49 (2020), https://doi.org/10.31857/S0131164620060041.

    Article  Google Scholar 

  44. P. Czobor and J. Volavka, “Pretreatment EEG predicts short-term response to haloperidol treatment,” Biol. Psychiatry, 30, No. 9, 927–942 (1991), https://doi.org/10.1016/0006-3223(91)90006-8.

    Article  CAS  PubMed  Google Scholar 

  45. S. Galderisi, M. Maj, A. Mucci, et al., “QEEG alpha-1 changes after a single dose of high-potency neuroleptics as a predictor of short-term response to treatment in schizophrenic patients,” Biol. Psychiatry, 35, No. 6, 367–374 (1994), https://doi.org/10.1016/0006-3223(94)90002-7.

    Article  CAS  PubMed  Google Scholar 

  46. T. M. Itil, D. Shapiro, S. J. Schneider, and I. B. Francis, “Computerized EEG as a predictor of drug response in treatment resistant schizophrenics,” J. Nerv. Ment. Dis., 169, No. 10, 629–637 (1981), https://doi.org/10.1097/00005053-198110000-00006.

    Article  CAS  PubMed  Google Scholar 

  47. S. C. Suffin and W. H. Emory, “Neurometric subgroups in attentional and affective disorders and their association with pharmacotherapeutic outcomes,” Clin. Electroencephalogr., 26, No. 2, 76–83 (1995), https://doi.org/10.1177/155005949502600204.

    Article  CAS  PubMed  Google Scholar 

  48. A. F. Iznak, E. V. Iznak, T. P. Klyushnik, et al., “Regression models of interrelationships between clinical and neurobiological parameters in treatment of manic-delusional conditions in attack-like schizophrenia,” Zh. Nevrol. Psikhiatr., 116, No. 3, 33–38 (2016), https://doi.org/10.17116/jnevro20161163133-38.

    Article  CAS  Google Scholar 

  49. A. F. Iznak, E. V. Iznak, T. P. Klyushnik, et al., “Neurobiological parameters in quantitative prediction of treatment outcome in schizophrenic patients,” J. Integr. Neurosci., 17, No. 3, 221–228 (2018), https://doi.org/10.31083/JIN-170054.

    Article  Google Scholar 

  50. A. F. Iznak, E. V. Iznak, L. I. Abramova, and M. A. Lozhnikov, “Models for the quantitative prediction of therapeutic responses based on the baseline EEG parameters in depressive patients,” Fiziol. Cheloveka, 45, No. 6, 40–47 (2019), https://doi.org/10.1134/S0362119719060057.

    Article  Google Scholar 

  51. S. C. Suffin, W. H. Emory, G. Gutierrez, et al., “A QEEG database method for predicting pharmacotherapeutic outcome in refractory major depressive disorders,” J. Am. Phys. Surg., 12, No. 4, 104–108 (2007).

    Google Scholar 

  52. G. Carpenter, H. T. Harbin, R. L. Smith, et al., “A promising new strategy to improve treatment outcomes for patients with depression,” Popul. Health Manag., 22, No. 3, 223–228 (2019), https://doi.org/10.1089/pop.2018.0101.

    Article  PubMed  PubMed Central  Google Scholar 

  53. C. Debattista, G. Kinrys, D. Hoffman, et al., “The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression,” J. Psychiatr. Res., 45, No. 1, 64–75 (2011), https://doi.org/10.1016/j.jpsychires.2010.05.009.

    Article  PubMed  Google Scholar 

  54. M. J. Schiller, “Quantitative electroencephalography in guiding treatment of major depression,” Front. Psychiatry, 9, No. 1, 1–7 (2019), https://doi.org/10.3389/fpsyt.2018.00779.

    Article  CAS  Google Scholar 

  55. D. Iosifescu, R. Neborsky, and R. J. Valuck, “The use of the psychiatric electroencephalography evaluation registry (PEER) to personalize pharmacotherapy,” Neuropsychiatr. Dis. Treat., 12, 2131–2142 (2016), https://doi.org/10.2147/NDT.S113712.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Iznak.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 121, No. 4, Iss. 1, pp. 145–151, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iznak, A.F., Iznak, E.V. EEG Predictors of Therapeutic Responses in Psychiatry. Neurosci Behav Physi 52, 207–212 (2022). https://doi.org/10.1007/s11055-022-01225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01225-3

Keywords

Navigation