Skip to main content

Advertisement

Log in

Neurophysiological Methods for Assessing Different Forms of Migraine

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The review discusses the efficacy of using neurophysiological methods in studies of migraine. Data reported by many authors indicate that neurophysiological methods such as analysis of visual and somatosensory event-related potentials and trigeminal event-related potentials are informative for assessment of the functional state of the trigeminal-cervical and sensory systems. Analysis of brain bioelectrical activity is used for the differential diagnosis of migraine and epilepsy and assessment of different forms of migraine. This review addresses studies recording and analyzing laser event-related potentials and investigations using exposure to transcranial magnetic stimulation (both diagnostic and as a nonpharmacological rehabilitation therapy), which increases work capacity and quality of life in migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Magisa, M. Lisicki, and G. Coppola, “Highlights in migraine electrophysiology: are controversies just reflecting disease heterogeneity?” Curr. Opin. Neurol., 29, No. 3, 320–330 (2016), https://doi.org/10.1097/WCO.0000000000000335.

    Article  Google Scholar 

  2. N. D. Sorokina, S. S. Pertsov, and G. V. Selitsky, “Neurobiological mechanisms of tension headache and migraine: similarities and differences,” Ross. Zh. Boli, No. 3, 96–108 (2018), https://doi.org/10.25731/RASP.2018.03.024.

  3. N. D. Sorokina, S. S. Pertsov, and G. V. Selitsky, “Neurobiological mechanisms of transcranial magnetic stimulation and its comparative efficacy in tension-type headache and migraine,” Ross. Med. Biol. Vestn., 26, No. 3, 417–429 (2018), https://doi.org/10.23888/PAVLOVJ2018263417-429.

    Article  Google Scholar 

  4. N. D. Sorokina, G. V. Selitsky, and A. S. Zherdeva, “Neurobiological aspects of the effectiveness of biofeedback in the treatment of migraine in epilepsy,” Zh. Nevrol. Psikhiatr., 116, No. 12, 39–43 (2016), https://doi.org/10.17116/jnevro201611612139-43.

    Article  CAS  Google Scholar 

  5. A. Ambrosini, “Neurophysiology of migraine,” Neurol. Sci., 39, Suppl. 1, 59–60 (2018), https://doi.org/10.1007/s10072-018-3385-3.

  6. S. Miskov, “Neurophysiological methods in headache diagnosis,” Med. Acta Croatica, 62, No. 2, 189–196 (2008).

    Google Scholar 

  7. M. de Tommaso, S. Stramaglia, D. Marinazzo, et al., “Functional and effective connectivity in EEG alpha and beta bands during intermittent flash stimulation in migraine with and without aura,” Cephalalgia, 33, No. 11, 938–947 (2013), https://doi.org/10.1177/0333102413477741.

    Article  PubMed  Google Scholar 

  8. T. Nyrke, P. Kangasniemi, and H. Lang, “Alpha rhythm in classical migraine (migraine with aura); abnormalities in the headache-free interval,” Cephalalgia, 10, No. 4, 177–182 (1990), https://doi.org/10.1046/j.1468-2982.1990.1004177.x.

    Article  CAS  PubMed  Google Scholar 

  9. M. Bjork and T. Sand, “Quantitative EEG power and asymmetry increase 36 h before a migraine attack,” Cephalalgia, 28, No. 9, 960–968 (2008), https://doi.org/10.1111/j.1468-2982.2008.01638.x.

    Article  PubMed  Google Scholar 

  10. M. H. Bjork, L. J. Stovner, M. Engstrøm, et al., “Interictal quantitative EEG in migraine: a blinded controlled study,” J. Headache Pain, 10, No. 5, 331–339 (2009), https://doi.org/10.1007/s10194-009-0140-4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Z. Cao, Ch. Lin, Ch.-H. Chuang, et al., “Resting-state EEG power and coherence vary between migraine phases,” J. Headache Pain, 17, No. 1, 102 (2016), https://doi.org/10.1186/s10194-016-0697-7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Bjørk, L. J. Stovner, K. Hagen, and T. Sand, “What initiates a migraine attack? Conclusions from four longitudinal studies of quantitative EEG and steady-state visual-evoked potentials in migraineurs,” Acta Neurol. Scand. Suppl., 191, 56-63 (2011), https://doi.org/10.1111/j.1600-0404.2011.01545.x.

    Article  Google Scholar 

  13. D. Restuccia, C. Vollono, I. Del Piero, et al., “Somatosensory high frequency oscillations reflect clinical fluctuations in migraine,” Clin. Neurophysiol., 123, No. 10, 2050–6 (2012), https://doi.org/10.1016/j.clinph.2012.03.009.

    Article  PubMed  Google Scholar 

  14. A. M. Vein, I. N. Efremova, and E. G. Filatova, “Clinical and neurophysiological features of migraine with aura in comparison with migraine without aura” Zh. Nevrol. Psikhiatr., 10, 45–49 (2003).

    Google Scholar 

  15. A. S. Kotov, “Comorbidity of migraine and epilepsy,” Poliklinika, 4, 35–39 (2012).

    Google Scholar 

  16. N. D. Sorokina, G. V. Selitsky, A. V. Tsagashek, and A. S. Zherdeva, “Evaluation of neurophysiological parameters and tone of the autonomic nervous system in migraine patients with epilepsy,” Epileps. Paroks. Sost., 10, No. 2, 26–34 (2018), https://doi.org/10.17749/2077-8333.2018.10.3.006-013.

    Article  Google Scholar 

  17. S. K. Aurora and F. Wilkinson, “The brain is hyperexcitable in migraine,” Cephalalgia, 27, No. 12, 1442–1453 (2007), https://doi.org/10.1111/j.1468-2982.2007.01502.x.

    Article  CAS  PubMed  Google Scholar 

  18. G. Coppola, F. Pierelli, and J. Schoenen, “Is the cerebral cortex hyperexcitable or hyperresponsive in migraine?” Cephalalgia, 27, No. 12, 1427–1439 (2007), https://doi.org/10.1111/j.1468-2982.2007.01500.x.

    Article  CAS  PubMed  Google Scholar 

  19. M. Deen, C. E. Christensen, A. Hougaard, et al., “Serotonergic mechanisms in the migraine brain – a systematic review,” Cephalalgia, 37, No. 3, 251–264 (2017), https://doi.org/10.1177/0333102416640501.

    Article  PubMed  Google Scholar 

  20. T. Sand, N. Zhitniy, L. R. White, and L. J. Stovner, “Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study,” Clin. Neurophysiol., 119, No. 5, 1020–1027 (2008), https://doi.org/10.1016/j.clinph.2008.01.009.

    Article  PubMed  Google Scholar 

  21. T. Sand, L. R. White, K. Hagen, and L. J. Stovner, “Visual evoked potential and spatial frequency in migraine: a longitudinal study,” Acta Neurol. Scand. Suppl., 189, 33–37 (2009), https://doi.org/10.1111/j.1600-0404.2009.01211.x.

    Article  Google Scholar 

  22. A. Ambrosini, G. Coppola, P. Y. Gerardy, et al., “Intensity dependence of auditory evoked potentials during light interference in migraine,” Neurosci. Lett., 492, No. 2, 80–83 (2011), https://doi.org/10.1016/j.neulet.2011.01.060.

    Article  CAS  PubMed  Google Scholar 

  23. T. Sand, N. Zhitniy, L. R. White, and L. J. Stovner, “Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study,” Clin. Neurophysiol., 119, No. 5, 1020–1027 (2008), https://doi.org/10.1016/j.clinph.2008.01.009.

    Article  PubMed  Google Scholar 

  24. E. A. Kuznetsova and E. Z. Yakupov, “Changes in evoked potentials and refl ex activity of brain stem structures in chronic headache,” Zh. Nevrol. Psikhiatr., 8, 27–30 (2011).

    Google Scholar 

  25. E. Z. Yakupov and E. A. Kuznetsova, “Features of evoked potentials in secondary headaches,” Zh. Nevrol. Psikhiatr., No. 1, 73–77 (2010).

  26. W. T. Chen, S. J. Wang, J. L. Fuh, et al., “Visual cortex excitability and plasticity associated with remission from chronic to episodic migraine,” Cephalalgia, 32, No. 7, 537–543 (2012), https://doi.org/10.1177/0333102412443337.

    Article  PubMed  Google Scholar 

  27. G. Coppola and J. Schoenen, “Cortical excitability in chronic migraine,” Curr. Pain Headache Rep., 16, No. 1, 93–100 (2012), https://doi.org/10.1007/s11916-011-0231-1.

    Article  PubMed  Google Scholar 

  28. M. de Tommaso, A. Ambrosini, F. Brighina, et al., “Altered processing of sensory stimuli in patients with migraine,” Nat. Rev. Neurol., 10, No. 3, 144–155 (2014), https://doi.org/10.1038/nrneurol.2014.14.

    Article  PubMed  Google Scholar 

  29. D. Magis, A. Ambrosini, L. Bendtsen, et al., “Evaluation and proposal for optimalization of neurophysiological tests in migraine: part 1 – electrophysiological tests,” Cephalalgia, 27, No. 12, 1323–1338 (2007), https://doi.org/10.1111/j.1468-2982.2007.01440.x.

    Article  CAS  PubMed  Google Scholar 

  30. A. Singh, D. Joshi, R. Yadav, et al., “Central cognitive processing assessed by P300 in migraine, tension-type headache, and cluster headache,” Int. J. Clin. Exp. Physiol., 2, No. 4, 220–223 (2015).

    Article  Google Scholar 

  31. M. Deen, C. E. Christensen, A. Hougaard, et al., “Serotonergic mechanisms in the migraine brain – a systematic review,” Cephalalgia, 37, No. 3, 251–264 (2017), https://doi.org/10.1177/0333102416640501.

    Article  PubMed  Google Scholar 

  32. K. Sakuma, T. Takeshima, K. Ishizaki, and K. Nakashima, “Somatosensory evoked high frequency oscillations in migraine patients,” Clin. Neurophysiol., 115, No. 8, 1857–1862 (2004), https://doi.org/10.1016/j.clinph.2004.03.011.

    Article  PubMed  Google Scholar 

  33. G. Coppola, M. Vandenheede, L. Di Clemente, et al., “Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks,” Brain, 128, No. 1, 98–103 (2005), https://doi.org/10.1093/brain/awh334.

    Article  PubMed  Google Scholar 

  34. G. Coppola, E. Iacovelli, M. Bracaglia, et al., “Electrophysiological correlates of episodic migraine chronification: evidence for thalamic involvement,” J. Headache Pain, 14, No. 1, 76 (2013), https://doi.org/10.1186/1129-2377-14-76.

    Article  PubMed  PubMed Central  Google Scholar 

  35. D. Restuccia, C. Vollono, D. Virdis, et al., “Patterns of habituation and clinical fluctuations in migraine,” Cephalalgia, 34, No. 3, 201–210 (2014), https://doi.org/10.1177/0333102413508241.

    Article  PubMed  Google Scholar 

  36. R. Sowmiya and R. Vinodha, “Evaluation of brainstem auditory evoked potential in migraine patient,” Int. J. Med. Res. Health Sci., 4, No. 4, 771–774 (2015), https://doi.org/10.5958/2319-5886.2015.00151.4.

    Article  Google Scholar 

  37. G. R. Tabeeva and N. N. Yakhno, Migraine, GEOTAR-Media, Moscow (2011).

  38. S. K. Aurora and F. Wilkinson, “The brain is hyperexcitable in migraine,” Cephalalgia, 27, 1442–1453 (2007).

    Article  CAS  Google Scholar 

  39. N. D. Sorokina, G. V. Selitsky, and E. S. Terementseva, “Neurophysiological aspects of pain syndromes of the maxillofacial region,” Zh. Nevrol. Psikhiatr., 114, No. 4, 105–110 (2014).

    CAS  Google Scholar 

  40. M. Tommaso, “Laser-evoked potentials in primary headaches and cranial neuralgias,” Expert Rev. Neurother., 8, No. 9, 1339–1345 (2008), https://doi.org/10.1586/14737175.8.9.1339.

    Article  PubMed  Google Scholar 

  41. G. D. Iannetti, N. P. Hughes, M. C. Lee, and A. Mouraux, “Determinants of laser-evoked EEG responses: Pain perception or stimulus saliency?” J. Neurophysiol., 100, 815–828 (2008), https://doi.org/10.1152/jn.00097.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Tommaso, G. Libro, M. Guido, et al., “Habituation of single CO2 laser-evoked responses during interictal phase of migraine,” J. Headache Pain, 6, No. 4, 195–198 (2005), https://doi.org/10.1007/s10194-005-0183-0.

    Article  PubMed  PubMed Central  Google Scholar 

  43. M. Tommaso, L. Lo Sito, O. Fruscolo, et al., “Lack of habituation of nociceptive evoked responses and pain sensitivity during migraine attack,” Clin. Neurophysiol., 116, No. 6, 1254–1264 (2005), https://doi.org/10.1016/j.clinph.2005.02.018.

    Article  PubMed  Google Scholar 

  44. S. K. Yildiz, N. Yildiz, B. Korkmaz, et al., “Sympathetic skin responses from frontal region in migraine headache: a pilot study,” Cephalalgia, 28, No. 7, 696-704 (2008), https://doi.org/10.1111/j.1468-2982.2008.01574.x.

    Article  CAS  PubMed  Google Scholar 

  45. E. Vecchio, I. Bassez, K. Ricci, et al., “Effect of non-invasive vagus nerve stimulation on resting-state electroencephalography and laser-evoked potentials in migraine patients: Mechanistic insights,” Front. Hum. Neurosci., 12, 366 (2018), https://doi.org/10.3389/fnhum.2018.00366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Bortoletto, D. Veniero, G. Thut, and C. Miniussi, “The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome,” Neurosci. Biobehav., 49, 114–124 (2015), https://doi.org/10.1016/j.neubiorev.2014.12.014.

    Article  Google Scholar 

  47. U. K. Misra, J. Kalita, G. Tripathi, and S. K. Bhoi, “Role of β endorphin in pain relief following high rate repetitive transcranial magnetic stimulation in migraine,” Brain Stimul., 10, No. 3, 618–623 (2017), https://doi.org/10.1016/j.brs.2017.02.006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Sorokina.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 121, No. 4, Iss. 1, pp. 121–126, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokina, N.D., Zherdeva, A.S., Selitsky, G.V. et al. Neurophysiological Methods for Assessing Different Forms of Migraine. Neurosci Behav Physi 52, 202–206 (2022). https://doi.org/10.1007/s11055-022-01224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01224-4

Keywords

Navigation